• Chinese Optics Letters
  • Vol. 21, Issue 8, 080501 (2023)
Haiyan Ou1,2,*, Yong Wu1, Kun Zhu3, Edmund Y. Lam4, and Bing-Zhong Wang1
Author Affiliations
  • 1School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China
  • 3Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, , ChinaHong Kong
  • 4Department of Electrical and Electronic Engineering, The University of Hong Kong, , ChinaHong Kong
  • show less
    DOI: 10.3788/COL202321.080501 Cite this Article Set citation alerts
    Haiyan Ou, Yong Wu, Kun Zhu, Edmund Y. Lam, Bing-Zhong Wang, "Suppressing defocus noise with U-net in optical scanning holography," Chin. Opt. Lett. 21, 080501 (2023) Copy Citation Text show less
    References

    [1] J. Swoger, M. Martınez-Corral, J. Huisken, E. H. K. Stelzer. Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy. J. Opt. Soc. Am. A, 19, 1910(2002).

    [2] B. W. Schilling, G. C. Templeton. Three-dimensional remote sensing by optical scanning holography. Appl. Opt., 40, 5474(2001).

    [3] T.-C. Poon, T. Kim, K. Doh. Optical scanning cryptography for secure wireless transmission. Appl. Opt., 42, 6496(2003).

    [4] H. Di, K. Zheng, X. Zhang, E. Y. Lam, T. Kim, Y. S. Kim, T.-C. Poon, C. Zhou. Multiple-image encryption by compressive holography. Appl. Opt., 51, 1000(2012).

    [5] Z. Ren, N. Chen, E. Y. Lam. Extended focused imaging and depth map reconstruction in optical scanning holography. Appl. Opt., 55, 1040(2016).

    [6] Z. Ren, N. Chen, E. Y. Lam. Automatic focusing for multisectional objects in digital holography using the structure tensor. Opt. Lett., 42, 1720(2017).

    [7] H. Ou, Y. Wu, E. Y. Lam, B.-Z. Wang. New autofocus and reconstruction method based on a connected domain. Opt. Lett., 43, 2201(2018).

    [8] H. Ou, Y. Wu, E. Y. Lam, B.-Z. Wang. Axial localization using time reversal multiple signal classification in optical scanning holography. Opt. Express, 26, 3756(2018).

    [9] J. Ke, T.-C. Poon, E. Y. Lam. Depth resolution enhancement in optical scanning holography with a dual-wavelength laser source. Appl. Opt., 50, H285(2011).

    [10] H. Ou, T.-C. Poon, K. K. Y. Wong, E. Y. Lam. Depth resolution enhancement in double-detection optical scanning holography. Appl. Opt., 52, 3079(2013).

    [11] H. Ou, T.-C. Poon, K. K. Y. Wong, E. Y. Lam. Enhanced depth resolution in optical scanning holography using a configurable pupil. Photonics Res., 2, 64(2014).

    [12] E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, G. Indebetouw. Three-dimensional microscopy and sectional image reconstruction using optical scanning holography. Appl. Opt., 48, H113(2009).

    [13] X. Zhang, E. Y. Lam, T.-C. Poon. Reconstruction of sectional images in holography using inverse imaging. Opt. Express, 16, 17215(2008).

    [14] T. Kim. Optical sectioning by optical scanning holography and a Wiener filter. Appl. Opt., 45, 872(2006).

    [15] A. C. S. Chan, K. K. Tsia, E. Y. Lam. Subsampled scanning holographic imaging (SuSHI) for fast, non-adaptive recording of three-dimensional objects. Optica, 3, 911(2016).

    [16] Z. Xin, K. Dobson, Y. Shinoda, T.-C. Poon. Sectional image reconstruction in optical scanning holography using a random-phase pupil. Opt. Lett., 35, 2934(2010).

    [17] H. Ou, H. Pan, E. Y. Lam, B.-Z. Wang. Defocus noise suppression with combined frame difference and connected component methods in optical scanning holography. Opt. lett., 40, 4146(2015).

    [18] L. Jin-xi, Z. Ding-fu, Y. Sheng, Z. Yuan-yuan, Z. Luo-zhi, H. Dong-ming, Z. Xin. Modified image fusion technique to remove defocus noise in optical scanning holography. Opt. Commun., 407, 234(2018).

    [19] T. Young, D. Hazarika, S. Poria, E. Cambria. Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag., 13, 55(2018).

    [20] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis. Deep learning for computer vision: a brief review. Comput. Intell. Neurosci., 2, 13(2018).

    [21] S. Ghosal, D. Blystone, A. K. Singh, B. Ganapathysubramanian, A. Singh, S. Sarkar. An explainable deep machine vision framework for plant stress phenotyping. Proc. Natl. Acad. Sci. U.S.A., 115, 4613(2018).

    [22] T. Zeng, Y. Zhu, E. Y. Lam. Deep learning for digital holography: a review. Opt. Express, 29, 40572(2021).

    [23] Z. Ren, Z. Xu, E. Y. Lam. Learning-based nonparametric autofocusing for digital holography. Optica, 5, 337(2018).

    [24] T. Pitkäaho, A. Manninen, T. J. Naughton. Focus prediction in digital holographic microscopy using deep convolutional neural networks. Appl. Opt., 58, A202(2019).

    [25] Y. Rivenson, Y. Zhang, H. Günaydin, D. Teng, A. Ozcan. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2017).

    [26] T. Nguyen, V. Bui, V. Lam, C. B. Raub, L. C. Chang, G. Nehmetallah. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Opt. Express, 25, 15043(2017).

    [27] S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, K. Lee. Deep transfer learning-based hologram classification for molecular diagnostics. Sci. Rep., 8, 17003(2018).

    [28] T.-C. Poon. Optical Scanning Holography with MATLAB(2017).

    [29] K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition(2015).

    [30] O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation(2015).

    [31] G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, N. Xie. Fast phase retrieval in off-axis digital holographic microscopy through deep learning. Opt. Express, 26, 19388(2018).

    [32] D. P. Kingma, J. Ba. Adam: A method for stochastic optimization(2014).

    [33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929(2014).

    [34] Y. Fisher. Fractal Image Compression(1995).

    [35] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600(2004).

    Haiyan Ou, Yong Wu, Kun Zhu, Edmund Y. Lam, Bing-Zhong Wang, "Suppressing defocus noise with U-net in optical scanning holography," Chin. Opt. Lett. 21, 080501 (2023)
    Download Citation