• Acta Physica Sinica
  • Vol. 68, Issue 2, 024301-1 (2019)
Zhi-Wen Qian1, De-Jiang Shang2、*, Qi-Hang Sun2, Yuan-An He3, and Jing-Sheng Zhai1、*
Author Affiliations
  • 1School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
  • 2College of Underwater Acoustics Engineering, Harbin Engineering University, Harbin 150001, China
  • 3Systems Engineering Research Institute, Beijing 100036, China
  • show less
    DOI: 10.7498/aps.68.20181452 Cite this Article
    Zhi-Wen Qian, De-Jiang Shang, Qi-Hang Sun, Yuan-An He, Jing-Sheng Zhai. Acoustic radiation from a cylinder in shallow water by finite element-parabolic equation method[J]. Acta Physica Sinica, 2019, 68(2): 024301-1 Copy Citation Text show less
    Principle of FEM-PE in shallow water.浅海波导下结构声辐射FEM-PE计算原理图
    Fig. 1. Principle of FEM-PE in shallow water.浅海波导下结构声辐射FEM-PE计算原理图
    Schematic diagram of IFDM used Crank-Nicolson.Crank-Nicolson有限差分法示意图
    Fig. 2. Schematic diagram of IFDM used Crank-Nicolson.Crank-Nicolson有限差分法示意图
    Acoustic propagation model of point source in shallow water.浅海波导下点源声传播模型
    Fig. 3. Acoustic propagation model of point source in shallow water.浅海波导下点源声传播模型
    Verification of point source used FEM-PE: (a) f = 30 Hz; (b) f = 300 Hz.点源的FEM-PE理论验证 (a) f = 30 Hz; (b) f = 300 Hz
    Fig. 4. Verification of point source used FEM-PE: (a) f = 30 Hz; (b) f = 300 Hz. 点源的FEM-PE理论验证 (a) f = 30 Hz; (b) f = 300 Hz
    FEM model diagram of elastic spherical shell in shallow water.浅海下弹性球壳声辐射有限元模型示意图
    Fig. 5. FEM model diagram of elastic spherical shell in shallow water.浅海下弹性球壳声辐射有限元模型示意图
    Verification of elastic sphere used FEM-PE: (a) f = 30 Hz; (b) f = 300 Hz.弹性球壳的FEM-PE理论验证 (a) f = 30 Hz; (b) f = 300 Hz
    Fig. 6. Verification of elastic sphere used FEM-PE: (a) f = 30 Hz; (b) f = 300 Hz. 弹性球壳的FEM-PE理论验证 (a) f = 30 Hz; (b) f = 300 Hz
    Contrast between method of FEM-PE and CWSM at 60 Hz.60 Hz频率下FEM-PE与CWSM计算结果对比
    Fig. 7. Contrast between method of FEM-PE and CWSM at 60 Hz.60 Hz频率下FEM-PE与CWSM计算结果对比
    Model of cylindrical sound radiation used FEM-PE in shallow water.浅海波导下圆柱壳声辐射FEM-PE预报模型
    Fig. 8. Model of cylindrical sound radiation used FEM-PE in shallow water.浅海波导下圆柱壳声辐射FEM-PE预报模型
    Curves of coupled modal frequency changed with diving depth: (a) Modal (4, 1); (b) modal (4, 2); (c) modal (6, 1); (d) modal (6, 2); (e) modal (6, 3); (f) modal (6, 4).耦合模态随潜深的变化曲线 (a) (4, 1); (b) (4, 2); (c) (6, 1); (d) (6, 2); (e) (6, 3); (f) (6, 4)
    Fig. 9. Curves of coupled modal frequency changed with diving depth: (a) Modal (4, 1); (b) modal (4, 2); (c) modal (6, 1); (d) modal (6, 2); (e) modal (6, 3); (f) modal (6, 4).耦合模态随潜深的变化曲线 (a) (4, 1); (b) (4, 2); (c) (6, 1); (d) (6, 2); (e) (6, 3); (f) (6, 4)
    Colour maps of structural sound propagation at different frequencies: (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz.不同频率下结构声场传播伪彩图 (a) f = 50 Hz; (b) f = 100 Hz; (c) f=150 Hz; (d) f = 200 Hz
    Fig. 10. Colour maps of structural sound propagation at different frequencies: (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz. 不同频率下结构声场传播伪彩图 (a) f = 50 Hz; (b) f = 100 Hz; (c) f=150 Hz; (d) f = 200 Hz
    Acoustic propagation contrast between structure and point souce at different frequencies: (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz.不同频率下结构辐射声场与点源声场对比 (a) f = 50 Hz; (b) f = 100 Hz; (c)f = 150 Hz; (d) f = 200 Hz
    Fig. 11. Acoustic propagation contrast between structure and point souce at different frequencies: (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz. 不同频率下结构辐射声场与点源声场对比 (a) f = 50 Hz; (b) f = 100 Hz; (c)f = 150 Hz; (d) f = 200 Hz
    Analysis of structural sound propagation at different frequencies: (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz.不同频率下结构辐射场传播特性分析 (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz
    Fig. 12. Analysis of structural sound propagation at different frequencies: (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz. 不同频率下结构辐射场传播特性分析 (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz
    FEM\begin{document}$\scriptstyle {d_{\rm FEM}}$\end{document}\begin{document}$\scriptstyle \lambda $\end{document}\begin{document}$\frac{\lambda }{2}$\end{document}\begin{document}$\frac{\lambda }{4}$\end{document}\begin{document}$\frac{\lambda }{6}$\end{document}\begin{document}$\frac{\lambda }{8}$\end{document}\begin{document}$\frac{\lambda }{{10}}$\end{document}\begin{document}$\frac{\lambda }{6}$\end{document}
    PE\begin{document}$\scriptstyle {d_z}$\end{document}\begin{document}$\frac{\lambda }{8}$\end{document}\begin{document}$\scriptstyle \lambda $\end{document}\begin{document}$\frac{\lambda }{2}$\end{document}\begin{document}$\frac{\lambda }{4}$\end{document}\begin{document}$\frac{\lambda }{8}$\end{document}\begin{document}$\frac{\lambda }{{16}}$\end{document}
    \begin{document}$\scriptstyle {d_r}=2{d_z}$\end{document}\begin{document}$\frac{\lambda }{4}$\end{document}\begin{document}$\scriptstyle 2\lambda $\end{document}\begin{document}$\scriptstyle \lambda $\end{document}\begin{document}$\frac{\lambda }{2}$\end{document}\begin{document}$\frac{\lambda }{4}$\end{document}\begin{document}$\frac{\lambda }{8}$\end{document}
    \begin{document}$\scriptstyle \varpi $\end{document}/% 11.66.84.23.33.43.513.811.27.83.33.5
    DOF/ \begin{document}$\scriptstyle \times {10^4}$\end{document}2.23.47.213.120.940.911.511.611.913.117. 7
    RAM/GB1.92.01.92.02.22.52.02.02.02.02.1
    t/s 2.34.57.512.417.321.911.511.611. 712.414.1
    Table 1.

    Convergence analysis of the method.

    方法收敛性分析

    l/km \begin{document}$\scriptstyle \lambda-5$\end{document}\begin{document}$\scriptstyle \lambda-1$\end{document}\begin{document}$\scriptstyle \lambda-10$\end{document}\begin{document}$\scriptstyle \lambda-50$\end{document}\begin{document}$\scriptstyle \lambda-100$\end{document}
    f/Hz 30609010060
    注: \begin{document}$\textstyle {\eta _{\rm CWSM/FEM{\text{-}}PE}}$\end{document}为两种方法时间比值, FEM-PE网格为 \begin{document}$\scriptstyle {d_{\rm FEM}}=\lambda /6$\end{document}, \begin{document}$\scriptstyle {d_z}=\lambda /8$\end{document}\begin{document}$\scriptstyle {d_r}=\lambda /4$\end{document}.
    tCWSM24.6240.4762.0068.7827.9798.98189.57276.68
    FEM-PE2.204.187.219.452.175.9811.6018.76
    \begin{document}$\textstyle {\eta _{\rm CWSM/FEM {\text{-}} PE}}$\end{document}11 : 110 : 19 : 18 : 114 : 117 : 116 : 114 : 1
    Table 2.

    The contrast test of runtime between FEM-PE and CWSM (unit: min).

    运行时间对比测试 (单位: min)

    Environment(4, 1) (4, 2) (6, 1) (6, 2) (6, 3) (6, 4)
    Free field7.7227.189.7518. 1935.1257.63
    Half-space7.8327.539.8718.4135.6258.18
    Pekeris7.8027.429.8018.2635.2657.71
    Table 3.

    Comparison of coupled modal frequency in different fluid environments (unit: Hz).

    不同流体环境下圆柱壳耦合模态频率(单位: Hz)

    n123456
    f/Hz 35.52106.56177.60248.65319.69390.73
    Table 4.

    Normal mode frequencies in Pekeris waveguide.

    Pekeris波导中各阶简正波频率

    Zhi-Wen Qian, De-Jiang Shang, Qi-Hang Sun, Yuan-An He, Jing-Sheng Zhai. Acoustic radiation from a cylinder in shallow water by finite element-parabolic equation method[J]. Acta Physica Sinica, 2019, 68(2): 024301-1
    Download Citation