• High Power Laser and Particle Beams
  • Vol. 34, Issue 12, 122002 (2022)
Yuji Wu1, Qing Zhang1, Feng Wang2、*, and Yulong Li2
Author Affiliations
  • 1School of Nuclear Engineering, Rocket Force University of Engineering, Xi’an 710025, China
  • 2Laser Fusion Research Center, CAEP, P. O. Box 919-988, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202234.220238 Cite this Article
    Yuji Wu, Qing Zhang, Feng Wang, Yulong Li. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34(12): 122002 Copy Citation Text show less
    References

    [1] Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 506, 343-348(2014).

    [2] Jacquemot S. Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies[J]. Nuclear Fusion, 57, 102024(2017).

    [3] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 12, 435-448(2016).

    [4] Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 54, 054008(2014).

    [5] Kyrala G A, Dixit S, Glenzer S, et al. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated X-ray detectors (invited)[J]. Review of Scientific Instruments, 81, 10E316(2010).

    [6] Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 22, 110501(2015).

    [7] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 239, 139-142(1972).

    [8] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).

    [9] Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 18, 051002(2011).

    [10] Meezan N B, Atherton L J, Callahan D A, et al. National Ignition Campaign hohlraum energetics[J]. Physics of Plasmas, 17, 056304(2010).

    [11] Wu Yuji, Wang Feng, Wang Qiuping, et al. A high temporal resolution numerical algorithm for shock wave velocity diagnosis[J]. Scientific Reports, 9, 8597(2019).

    [12] Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments[J]. Physics of Plasmas, 21, 092702(2014).

    [13] Smith R F, Eggert J H, Saculla M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in Bismuth[J]. Physical Review Letters, 101, 065701(2008).

    [14] Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 43, 4669-4675(1972).

    [15] Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 73, 1320-1322(1998).

    [16] Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 75, 4916-4929(2004).

    [17] Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Physics of Plasmas, 21, 056313(2014).

    [18] Liu Shouxian, Peng Qixian, Lei Jiangbo, . Line-imaging and framing plane-imaging velocity interferometer for laser driven flyer diagnostics[J]. High Power Laser and Particle Beams, 26, 081008(2014).

    [19] Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nuclear Fusion, 58, 076003(2018).

    [20] Wu Yuji, Wang Qiuping, Wang Feng, . Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 31, 032001(2019).

    [21] Zylstra A B, Frenje J A, Séguin F H, et al. In-flight observations of low-mode ρR asymmetries in NIF implosions[J]. Physics of Plasmas, 22, 056301(2015).

    [22] Wu Yuji. Wideangle shock wave velocity diagnostic method related VISAR technology in laser fusion[D]. Hefei: University of Science Technology of China, 2019: 7181

    [23] Erskine D J. Forward modeling of Doppler velocity interferometer system for improved shockwave measurements[J]. Review of Scientific Instruments, 91, 043103(2020).

    [24] Nakai M, Yamanaka M, Azechi H, et al. X-ray and particle diagnostics of a high-density plasma by laser implosion (invited)[J]. Review of Scientific Instruments, 61, 3235-3240(1990).

    [25] Séguin F H, Li C K, DeCiantis J L, et al. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield[J]. Physics of Plasmas, 23, 032705(2016).

    [26] Bose A, Betti R, Mangino D, et al. Analysis of trends in experimental observables: reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 25, 062701(2018).

    [27] Glenzer S H, MacGowan B J, Meezan N B, et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 106, 085004(2011).

    Yuji Wu, Qing Zhang, Feng Wang, Yulong Li. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34(12): 122002
    Download Citation