• Chinese Optics Letters
  • Vol. 20, Issue 11, 111902 (2022)
Zhenzhong Hao1, Li Zhang1, Jie Wang1, Fang Bo1、2、*, Feng Gao1、2, Guoquan Zhang1、2、**, and Jingjun Xu1、2、***
Author Affiliations
  • 1MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.3788/COL202220.111902 Cite this Article Set citation alerts
    Zhenzhong Hao, Li Zhang, Jie Wang, Fang Bo, Feng Gao, Guoquan Zhang, Jingjun Xu. Sum-frequency generation of a laser and its background in an on-chip lithium-niobate microdisk[J]. Chinese Optics Letters, 2022, 20(11): 111902 Copy Citation Text show less
    References

    [1] Y. Zhi, X. Yu, Q. Gong, L. Yang, Y. Xiao. Single nanoparticle detection using optical microcavities. Adv. Mater., 29, 1604920(2017).

    [2] R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, H. Zappe. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 5, 872(2018).

    [3] M. Li, C. Zou, C. Dong, X. Ren, D. Dai. Enhancement of second-harmonic generation based on the cascaded second- and third-order nonlinear processes in a multimode optical microcavity. Phys. Rev. A, 98, 013854(2018).

    [4] D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, D. Bajoni. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2, 88(2015).

    [5] R. Gao, N. Yao, J. Guan, L. Deng, J. Lin, M. Wang, L. Qiao, W. Fang, Y. Cheng. 108 lithium niobate microring with ultra-high Q factor above. Chin. Opt. Lett., 20, 011902(2022).

    [6] K. Zhang, Z. Chen, H. Feng, W. Wong, E. Y. Pun, C. Wang. High-Q lithium niobate microring resonators using lift-off metallic masks. Chin. Opt. Lett., 19, 060010(2021).

    [7] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242(2021).

    [8] C. Lin, Y. Chen, X. Li, L. Yang, R. Ni, G. Zhao, Y. Zhang, X. Hu, S. Zhu. Frequency-doubled vortex beam emitter based on nonlinear Cherenkov radiation. Chin. Opt. Lett., 18, 071902(2020).

    [9] S. Liu, Y. Zheng, X. Chen. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett., 42, 3626(2017).

    [10] R. Wolf, I. Breunig, H. Zappe, K. Buse. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express, 25, 29927(2017).

    [11] S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, X. Chen. Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes. Opt. Lett., 44, 1456(2019).

    [12] G. Lin, Q. Song. Kerr frequency comb interaction with Raman, Brillouin, and second order nonlinear effects. Laser Photonics Rev., 16, 2100184(2022).

    [13] N. N. David. Nonlinear Optical Crystals: A Complete Survey(2005).

    [14] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910(2020).

    [15] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2019).

    [16] Y. Li, Z. Huang, W. Qiu, J. Dong, H. Guan, H. Lu. Recent progress of second harmonic generation based on thin film lithium niobate. Chin. Opt. Lett., 19, 060012(2021).

    [17] J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, H. X. Tang. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455(2019).

    [18] J. Chen, Z. Ma, Y. Sua, Z. Li, C. Tang, Y. Huang. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244(2019).

    [19] J. Chen, C. Tang, M. Jin, Z. Li, Z. Ma, H. Fan, S. Kumar, Y. M. Sua, Y. Huang. Efficient frequency doubling with active stabilization on chip. Laser Photonics Rev., 15, 2100091(2021).

    [20] J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, Y. Cheng. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [21] Z. Hao, L. Zhang, W. Mao, A. Gao, X. Gao, F. Gao, F. Bo, G. Zhang, J. Xu. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photonics Res., 8, 311(2020).

    [22] X. Wu, L. Zhang, Z. Hao, R. Zhang, R. Ma, F. Bo, G. Zhang, J. Xu. Broadband second-harmonic generation in step-chirped periodically poled lithium niobate waveguides. Opt. Lett., 47, 1574(2022).

    [23] L. Zhang, Z. Hao, Q. Luo, A. Gao, R. Zhang, C. Yang, F. Gao, F. Bo, G. Zhang, J. Xu. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt. Lett., 45, 3353(2020).

    [24] Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, J. Xu. Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Res., 5, 623(2017).

    [25] X. Ye, S. Liu, Y. Chen, Y. Zheng, X. Chen. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching. Opt. Lett., 45, 523(2020).

    [26] J. Lu, A. Al Sayem, Z. Gong, J. B. Surya, C. Zou, H. Tang. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica, 8, 539(2021).

    [27] R. Luo, Y. He, H. Liang, M. Li, J. Ling, Q. Lin. Optical parametric generation in a lithium niobate microring with modal phase matching. Phys. Rev. Appl., 11, 034026(2019).

    [28] R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, Q. Lin. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express, 25, 24531(2017).

    [29] J. Lu, M. Li, C. Zou, A. Al Sayem, H. Tang. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica, 7, 1654(2020).

    [30] C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, M. Loncar. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [31] D. V. Strekalov, A. S. Kowligy, V. G. Velev, G. S. Kanter, P. Kumar, Y. Huang. Phase matching for the optical frequency conversion processes in whispering gallery mode resonators. J. Mod. Opt., 63, 50(2016).

    [32] J. Moore, M. Tomes, T. Carmon, M. Jarrahi. Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator. Opt. Express, 19, 24139(2011).

    [33] J. Moore, M. Tomes, T. Carmon, M. Jarrahi. Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators. Appl. Phys. Lett., 99, 221111(2011).

    [34] J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, M. Eichenfield. Efficient second harmonic generation in lithium niobate on insulator. Conference on Lasers and Electro-Optics, STh3P.1(2016).

    [35] D. V. Strekalov, A. S. Kowligy, Y. Huang, P. Kumar. Optical sum-frequency generation in a whispering-gallery-mode resonator. New J. Phys., 16, 053025(2014).

    Data from CrossRef

    [1] Li Zhang, Xiao Wu, Zhenzhong Hao, Rui Ma, Feng Gao, Fang Bo, Guoquan Zhang, Jingjun Xu. Second-harmonic and cascaded third-harmonic generation in generalized quasiperiodic poled lithium niobate waveguides. Optics Letters, 48, 1906(2023).

    Zhenzhong Hao, Li Zhang, Jie Wang, Fang Bo, Feng Gao, Guoquan Zhang, Jingjun Xu. Sum-frequency generation of a laser and its background in an on-chip lithium-niobate microdisk[J]. Chinese Optics Letters, 2022, 20(11): 111902
    Download Citation