• Matter and Radiation at Extremes
  • Vol. 7, Issue 5, 058402 (2022)
Juefei Wu*, Wang Yue-Chao, Yu Liu, Bo Sun, Yanhong Zhao, Jiawei Xian, Xingyu Gao, Haifeng Liu, and Haifeng Song
Author Affiliations
  • Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • show less
    DOI: 10.1063/5.0091969 Cite this Article
    Juefei Wu, Wang Yue-Chao, Yu Liu, Bo Sun, Yanhong Zhao, Jiawei Xian, Xingyu Gao, Haifeng Liu, Haifeng Song. First-principles study on the electronic structure transition of β-UH3 under high pressure[J]. Matter and Radiation at Extremes, 2022, 7(5): 058402 Copy Citation Text show less
    References

    [1] I. A.Troyan, A. P.Drozdov, V.Ksenofontov, S. I.Shylin, M. I.Eremets. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).

    [2] A. K.Mishra, M.Baldini, R. J.Hemley, Z. M.Geballe, V. V.Struzhkin, M.Ahart, M.Somayazulu, Y.Meng. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [3] H.Vindana, R. P.Dias, N.Dasenbrock-Gammon, A.Salamat, K.Vencatasamy, R.McBride, K. V.Lawler, E.Snider, M.Debessai. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373-377(2020).

    [4] A. G.Kvashnin, N.Holtgrewe, A. R.Oganov, A. F.Goncharov, V. B.Prakapenka, S. S.Lobanov, A. V.Yanilkin, I. A.Kruglov, E.Greenberg, S.Jiang. Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity. Sci. Adv., 4, eaat9776(2018).

    [5] F.Zheng, M.Li, P.Zhang, X.Wang. Crystal structure prediction of uranium hydrides at high pressure: A new hydrogen-rich phase. Phys. Lett. A, 382, 2959-2964(2018).

    [6] D.Li, M.Liu, M.Liu, W.Mo, T.Fa, Y.Shi, B.Bai, X.Chen, X.Wang. First-principles comprehensive study of electronic and mechanical properties of novel uranium hydrides at different pressures. Prog. Nat. Sci.: Mater. Int., 30, 251-259(2020).

    [7] G. P.Kushto, P. F.Souter, L.Andrews, M.Neurock. Experimental and theoretical evidence for the formation of several uranium hydride molecules. J. Am. Chem. Soc., 119, 1682-1687(1997).

    [8] R. H.Lindh, X.Wang, L.Gagliardi, L.Andrews, J.Raab. A combined experimental and theoretical study of uranium polyhydrides with new evidence for the large complex UH4(H2)6. J. Phys. Chem., 111, 6383-6387(2007).

    [9] J.Lee, K. J.Jung, S.Cho, K. H.Kim, H.Chung, H.Lee, P.Camp, H.-G.Kang, D.Koo, S.Paek, S.-H.Yun, C. S.Kim, H.Yoshida, M. H.Chang, D.Chung. Hydriding and dehydriding characteristics of small-scale DU and ZrCo beds. Fusion Eng. Des., 88, 2276-2279(2013).

    [10] N. J.Harker, T. B.Scott, A.Banos. A review of uranium corrosion by hydrogen and the formation of uranium hydride. Corros. Sci., 136, 129-147(2018).

    [11] H.Ju, H.Yoo, W.Kim. A numerical comparison of hydrogen absorption behaviors of uranium and zirconium cobalt-based metal hydride beds. Solid State Ionics, 262, 241-247(2014).

    [12] A.San-Martin, F. D.Manchester. The H-U (hydrogen-uranium) system. J. Phase Equilib., 16, 263-275(1995).

    [13] J.Bloch. The hydriding kinetics of activated uranium powder under low (near equilibrium) hydrogen pressure. J. Alloys Compd., 361, 130-137(2003).

    [14] R. N. R.Mulford, W. H.Zachariasen, F. H.Ellinger. A new form of uranium hydride. J. Am. Chem. Soc., 76, 297(1954).

    [15] T.Lookman, C. D.Taylor, R. S.Lillard. Ab initio calculations of the uranium–hydrogen system: Thermodynamics, hydrogen saturation of α-U and phase-transformation to UH3. Acta Mater., 58, 1045-1055(2010).

    [16] Y.Yang, B.Wang, Y.Lu, Y.Zhang, P.Zhang. Electronic, mechanical and thermodynamic properties of α-UH3: A comparative study by using the LDA and LDA+U approaches. J. Nucl. Mater., 430, 137-141(2012).

    [17] N.-T. H.Kim-Ngan, D.Drozdenko, I.Tkach, B.Vondrá?ková, M.Divi?, A. V.Andreev, D.Kriegner, M.Cieslar, L.Havela, Z.Matěj, I.Turek, M.Paukov. Electronic properties of α-UH3 stabilized by Zr. Phys. Rev. B, 91, 115116(2015).

    [18] R.Troc, W.Suski. The discovery of the ferromagnetism in U(H, D)3: 40 years later. J. Alloys Compd., 219, 1(1995).

    [19] L.Kyvala, L.Havela, J.Prchal, M.Dopita, J.Valenta, V.Buturlim, I.Turek, D.Legut, M.Divis. Pressure variations of the 5f magnetism in UH3. J. Magn. Magn. Mater., 497, 165993(2019).

    [20] H.-L.Shi, G.-H.Zhong, Y.-H.Su, H.Jiang, C.Zhang. Mechanical and thermodynamic properties of α-UH3 under pressure. J. Alloys Compd., 604, 171-174(2014).

    [21] M.Brill, S.Salhov, I.Halevy, I.Yaar, S.Zalkind. High pressure study of β-UH3 crystallographic and electronic structure. J. Alloys Compd., 370, 59-64(2004).

    [22] C. D.Taylor. Characterizing electronic structure motifs in β-UH3. Phys. Rev. B, 82, 224408(2010).

    [23] H.Shi, R.Ahuja, W.Luo, B.Johansson. First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3. Phys. Rev. B, 78, 155119(2008).

    [24] I.Efthimiopoulos, J.Müller, M.Koch-Müller, M.Nú?ez Valdez, C.McCammon, E.Bykova, M.Taran, M.Wilke. Evidence for a pressure-induced spin transition in olivine-type LiFePO4 triphylite. Phys. Rev. B, 97, 184405(2018).

    [25] F.Wastin, R.Eloirdi, J.Rebizant, D.Kolberg, T.Gouder, E.Colineau, F.Huber. Electronic structure of UH3 thin films prepared by sputter deposition. Phys. Rev. B, 70, 235108(2004).

    [26] G.Zwicknagl. 5f electron correlations and core level photoelectron spectra of uranium compounds. Phys. Status Solidi B, 250, 634-637(2013).

    [27] H.Lu, L.Huang. Pressure-driven 5f localized-itinerant transition and valence fluctuation in cubic phase californium. Phys. Rev. B, 99, 045109(2019).

    [28] Y.-C.Wang, H.Jiang. Local screened Coulomb correction approach to strongly correlated d-electron systems. J. Chem. Phys., 150, 154116(2019).

    [29] R. E.Rundle. The structure of uranium hydride and deuteride. J. Am. Chem. Soc., 69, 1719-1723(1947).

    [30] R. E.Rundle. The hydrogen positions in uranium hydride by neutron diffraction. J. Am. Chem. Soc., 73, 4172-4174(1951).

    [31] B.Meerovici, M.Kuznietz, J.Grunzweig-Genossar. Nuclear magnetic resonance in uranium hydride and deuteride. Phys. Rev. B, 1, 1958(1970).

    [32] J.Furthmüller, G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169(1996).

    [33] J. D.Pack, H. J.Monkhorst. Special points for Brillouin zone integrations. Phys. Rev. B, 13, 5188(1976).

    [34] M.Ernzerhof, K.Burke, J. P.Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865(1996).

    [35] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953(1994).

    [36] O. K.Andersen, V. I.Anisimov, J.Zaanen. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B, 44, 943(1991).

    [37] A. P.Sutton, G. A.Botton, S. Y.Savrasov, C. J.Humphreys, S. L.Dudarev. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B, 57, 1505(1998).

    [38] A. H.Morrish. The Physical Principles of Magnetism(1965).

    [39] H.-F.Song, D.-Y.Lin, X.Gao, Y.-F.Zhao, F.Tian. A structural modeling approach to solid solutions based on the similar atomic environment. J. Chem. Phys., 153, 034101(2020).

    [40] B.Dorado, P.Garcia. First-principles DFT+U modeling of actinide-based alloys: Application to paramagnetic phases of UO2 and (U, Pu) mixed oxides. Phys. Rev. B, 87, 195139(2013).

    Juefei Wu, Wang Yue-Chao, Yu Liu, Bo Sun, Yanhong Zhao, Jiawei Xian, Xingyu Gao, Haifeng Liu, Haifeng Song. First-principles study on the electronic structure transition of β-UH3 under high pressure[J]. Matter and Radiation at Extremes, 2022, 7(5): 058402
    Download Citation