[1] A. P.Drozdov, M. I.Eremets, V.Ksenofontov, S. I.Shylin, I. A.Troyan. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).
[2] M.Ahart, M.Baldini, Z. M.Geballe, R. J.Hemley, Y.Meng, A. K.Mishra, M.Somayazulu, V. V.Struzhkin. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).
[3] N.Dasenbrock-Gammon, M.Debessai, R. P.Dias, K. V.Lawler, R.McBride, A.Salamat, E.Snider, K.Vencatasamy, H.Vindana. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373-377(2020).
[4] A. F.Goncharov, E.Greenberg, N.Holtgrewe, S.Jiang, I. A.Kruglov, A. G.Kvashnin, S. S.Lobanov, A. R.Oganov, V. B.Prakapenka, A. V.Yanilkin. Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity. Sci. Adv., 4, eaat9776(2018).
[5] M.Li, X.Wang, P.Zhang, F.Zheng. Crystal structure prediction of uranium hydrides at high pressure: A new hydrogen-rich phase. Phys. Lett. A, 382, 2959-2964(2018).
[6] B.Bai, X.Chen, T.Fa, D.Li, M.Liu, M.Liu, W.Mo, Y.Shi, X.Wang. First-principles comprehensive study of electronic and mechanical properties of novel uranium hydrides at different pressures. Prog. Nat. Sci.: Mater. Int., 30, 251-259(2020).
[7] L.Andrews, G. P.Kushto, M.Neurock, P. F.Souter. Experimental and theoretical evidence for the formation of several uranium hydride molecules. J. Am. Chem. Soc., 119, 1682-1687(1997).
[8] L.Andrews, L.Gagliardi, R. H.Lindh, J.Raab, X.Wang. A combined experimental and theoretical study of uranium polyhydrides with new evidence for the large complex UH4(H2)6. J. Phys. Chem., 111, 6383-6387(2007).
[9] P.Camp, M. H.Chang, S.Cho, D.Chung, H.Chung, K. J.Jung, H.-G.Kang, C. S.Kim, K. H.Kim, D.Koo, H.Lee, J.Lee, S.Paek, H.Yoshida, S.-H.Yun. Hydriding and dehydriding characteristics of small-scale DU and ZrCo beds. Fusion Eng. Des., 88, 2276-2279(2013).
[10] A.Banos, N. J.Harker, T. B.Scott. A review of uranium corrosion by hydrogen and the formation of uranium hydride. Corros. Sci., 136, 129-147(2018).
[11] H.Ju, W.Kim, H.Yoo. A numerical comparison of hydrogen absorption behaviors of uranium and zirconium cobalt-based metal hydride beds. Solid State Ionics, 262, 241-247(2014).
[12] F. D.Manchester, A.San-Martin. The H-U (hydrogen-uranium) system. J. Phase Equilib., 16, 263-275(1995).
[13] J.Bloch. The hydriding kinetics of activated uranium powder under low (near equilibrium) hydrogen pressure. J. Alloys Compd., 361, 130-137(2003).
[14] F. H.Ellinger, R. N. R.Mulford, W. H.Zachariasen. A new form of uranium hydride. J. Am. Chem. Soc., 76, 297(1954).
[15] R. S.Lillard, T.Lookman, C. D.Taylor. Ab initio calculations of the uranium–hydrogen system: Thermodynamics, hydrogen saturation of
[16] Y.Lu, B.Wang, Y.Yang, P.Zhang, Y.Zhang. Electronic, mechanical and thermodynamic properties of
[17] A. V.Andreev, M.Cieslar, M.Divi?, D.Drozdenko, L.Havela, N.-T. H.Kim-Ngan, D.Kriegner, Z.Matěj, M.Paukov, I.Tkach, I.Turek, B.Vondrá?ková. Electronic properties of
[18] W.Suski, R.Troc. The discovery of the ferromagnetism in U(H, D)3: 40 years later. J. Alloys Compd., 219, 1(1995).
[19] V.Buturlim, M.Divis, M.Dopita, L.Havela, L.Kyvala, D.Legut, J.Prchal, I.Turek, J.Valenta. Pressure variations of the 5
[20] H.Jiang, H.-L.Shi, Y.-H.Su, C.Zhang, G.-H.Zhong. Mechanical and thermodynamic properties of
[21] M.Brill, I.Halevy, S.Salhov, I.Yaar, S.Zalkind. High pressure study of
[22] C. D.Taylor. Characterizing electronic structure motifs in
[23] R.Ahuja, B.Johansson, W.Luo, H.Shi. First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3. Phys. Rev. B, 78, 155119(2008).
[24] E.Bykova, I.Efthimiopoulos, M.Koch-Müller, C.McCammon, J.Müller, M.Nú?ez Valdez, M.Taran, M.Wilke. Evidence for a pressure-induced spin transition in olivine-type LiFePO4 triphylite. Phys. Rev. B, 97, 184405(2018).
[25] E.Colineau, R.Eloirdi, T.Gouder, F.Huber, D.Kolberg, J.Rebizant, F.Wastin. Electronic structure of UH3 thin films prepared by sputter deposition. Phys. Rev. B, 70, 235108(2004).
[26] G.Zwicknagl. 5
[27] L.Huang, H.Lu. Pressure-driven 5
[28] H.Jiang, Y.-C.Wang. Local screened Coulomb correction approach to strongly correlated
[29] R. E.Rundle. The structure of uranium hydride and deuteride. J. Am. Chem. Soc., 69, 1719-1723(1947).
[30] R. E.Rundle. The hydrogen positions in uranium hydride by neutron diffraction. J. Am. Chem. Soc., 73, 4172-4174(1951).
[31] J.Grunzweig-Genossar, M.Kuznietz, B.Meerovici. Nuclear magnetic resonance in uranium hydride and deuteride. Phys. Rev. B, 1, 1958(1970).
[32] J.Furthmüller, G.Kresse. Efficient iterative schemes for
[33] H. J.Monkhorst, J. D.Pack. Special points for Brillouin zone integrations. Phys. Rev. B, 13, 5188(1976).
[34] K.Burke, M.Ernzerhof, J. P.Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865(1996).
[35] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953(1994).
[36] O. K.Andersen, V. I.Anisimov, J.Zaanen. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B, 44, 943(1991).
[37] G. A.Botton, S. L.Dudarev, C. J.Humphreys, S. Y.Savrasov, A. P.Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B, 57, 1505(1998).
[38] A. H.Morrish. The Physical Principles of Magnetism(1965).
[39] X.Gao, D.-Y.Lin, H.-F.Song, F.Tian, Y.-F.Zhao. A structural modeling approach to solid solutions based on the similar atomic environment. J. Chem. Phys., 153, 034101(2020).
[40] B.Dorado, P.Garcia. First-principles DFT+U modeling of actinide-based alloys: Application to paramagnetic phases of UO2 and (U, Pu) mixed oxides. Phys. Rev. B, 87, 195139(2013).