• Photonics Research
  • Vol. 11, Issue 11, A97 (2023)
Jian-Cheng Li1、2, Jin-Long Xiao1、2, Yue-De Yang1、2, You-Ling Chen1、2, and Yong-Zhen Huang1、2、*
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.489371 Cite this Article Set citation alerts
    Jian-Cheng Li, Jin-Long Xiao, Yue-De Yang, You-Ling Chen, Yong-Zhen Huang. Nonlinear dynamics in a circular-sided square microcavity laser[J]. Photonics Research, 2023, 11(11): A97 Copy Citation Text show less
    References

    [1] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics, 2, 728-732(2008).

    [2] Y. Guo, Q. Cai, P. Li, R. Zhang, B. Xu, K. A. Shore, Y. Wang. Ultrafast and real-time physical random bit extraction with all-optical quantization. Adv. Photon., 4, 035001(2022).

    [3] W. D. Shao, Y. D. Fu, M. F. Cheng, L. Deng, D. M. Liu. Chaos synchronization based on hybrid entropy sources and applications to secure communication. IEEE Photon. Technol. Lett., 33, 1038-1041(2021).

    [4] Y. H. Wang, M. J. Zhang, J. Z. Zhang, L. J. Qiao, T. Wang, Q. Zhang, L. Zhao, Y. C. Wang. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser. J. Lightwave Technol., 37, 3706-3712(2019).

    [5] C. H. Tseng, S. K. Hwang. Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications. Opt. Lett., 45, 3777-3780(2020).

    [6] W. Z. Feng, N. Jiang, Y. Q. Zhang, J. Y. Jin, A. K. Zhao, S. Q. Liu, K. Qiu. Pulsed-chaos MIMO radar based on a single flat-spectrum and delta-like autocorrelation optical chaos source. Opt. Express, 30, 4782-4792(2022).

    [7] Y. Kuriki, J. Nakayama, K. Takano, A. Uchida. Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers. Opt. Express, 26, 5777-5788(2018).

    [8] M. Sciamanna, K. A. Shore. Physics and applications of laser diode chaos. Nat. Photonics, 9, 151-162(2015).

    [9] J. Ohtsubo. Semiconductor Lasers Stability, Instability and Chaos(2017).

    [10] T. B. Simpson, J. M. Liu, A. Gavrielides, V. V. Kovanis, P. M. Alsing. Period-doubling route to chaos in a semiconductor laser subject to optical injection. Appl. Phys. Lett., 64, 3539-3541(1994).

    [11] T. B. Simpson, J. M. Liu, A. Gavrielides, V. V. Kovanis, P. M. Alsing. Period-doubling cascades and chaos in a semiconductor laser with optical injection. Phys. Rev. A, 51, 4181-4185(1995).

    [12] Z. F. Jiang, Z. M. Wu, E. Jayaprasath, W. Y. Yang, C. X. Hu, G. Q. Xia. Nonlinear dynamics of exclusive excited-state emission quantum dot lasers under optical injection. Photonics, 6, 58(2019).

    [13] L. Qiao, T. Lv, Y. Xu, M. Zhang, J. Zhang, T. Wang, R. Zhou, Q. Wang, H. Xu. Generation of flat wideband chaos based on mutual injection of semiconductor lasers. Opt. Lett., 44, 5394-5397(2019).

    [14] T. Mukai, K. Otsuka. New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity. Phys. Rev. Lett., 55, 1711-1714(1985).

    [15] J. Mork, J. Mark, B. Tromborg. Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback. Phys. Rev. Lett., 65, 1999-2002(1990).

    [16] Y. Deng, Z. F. Fan, B. B. Zhao, X. G. Wang, S. Zhao, J. Wu, F. Grillot, C. Wang. Mid-infrared hyperchaos of interband cascade lasers. Light Sci. Appl., 11, 7(2022).

    [17] S. Tang, J. M. Liu. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback. IEEE J. Quantum Electron., 37, 329-336(2001).

    [18] Y. H. Hong, P. S. Spencer, K. A. Shore. Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection. IEEE J. Quantum Electron., 50, 236-242(2014).

    [19] R. Zhang, P. Zhou, Y. Yang, Q. Fang, P. Mu, N. Li. Enhancing time-delay suppression in a semiconductor laser with chaotic optical injection via parameter mismatch. Opt. Express, 28, 7197-7206(2020).

    [20] A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, D. Syvridis. Photonic integrated device for chaos applications in communications. Phys. Rev. Lett., 100, 194101(2008).

    [21] V. Z. Tronciu, C. Mirasso, P. Colet, M. Hamacher, M. Benedetti, V. Vercesi, V. Annovazzi-Lodi. Chaos generation and synchronization using an integrated source with an air gap. IEEE J. Quantum Electron., 46, 1840-1846(2010).

    [22] T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, A. Uchida. Fast nondeterministic random-bit generation using on-chip chaos lasers. Phys. Rev. A, 83, 031803(2011).

    [23] S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, A. Uchida. Chaos laser chips with delayed optical feedback using a passive ring waveguide. Opt. Express, 19, 5713-5724(2011).

    [24] J. G. Wu, L. J. Zhao, Z. M. Wu, D. Lu, X. Tang, Z. Q. Zhong, G. Q. Xia. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. Opt. Express, 21, 23358-23364(2013).

    [25] M. J. Zhang, Y. H. Xu, T. Zhao, Y. N. Niu, T. Lv, Y. Liu, Z. K. Zhang, J. Z. Zhang, Y. Liu, Y. C. Wang, A. B. Wang. A hybrid integrated short-external-cavity chaotic semiconductor laser. IEEE Photon. Technol. Lett., 29, 1911-1914(2017).

    [26] M. Chai, L. Qiao, S. Li, X. Wei, H. Xu, J. Zhao, M. Zhang. Wavelength-tunable monolithically integrated chaotic semiconductor laser. J. Lightwave Technol., 40, 5952-5957(2022).

    [27] M. P. Vaughan, I. Henning, M. J. Adams, L. J. Rivers, P. Cannard, I. F. Lealman. Mutual optical injection in coupled DBR laser pairs. Opt. Express, 17, 2033-2041(2009).

    [28] D. Liu, C. Sun, B. Xiong, Y. Luo. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay. Opt. Express, 22, 5614-5622(2014).

    [29] M. Tang, Y. D. Yang, J. L. Wu, Y. Z. Hao, H. Z. Weng, J. L. Xiao, Y. Z. Huang. Dynamical characteristics of twin-microring lasers with mutual optical injection. J. Lightwave Technol., 39, 1444-1450(2021).

    [30] M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna. Deterministic polarization chaos from a laser diode. Nat. Photonics, 7, 60-65(2012).

    [31] C. G. Ma, J. L. Xiao, Z. X. Xiao, Y. D. Yang, Y. Z. Huang. Chaotic microlasers caused by internal mode interaction for random number generation. Light Sci. Appl., 11, 187(2022).

    [32] J. C. Li, J. L. Xiao, Y. D. Yang, Y. L. Chen, Y. Z. Huang. Random bit generation based on self-chaotic microlasers with enhanced chaotic bandwidth. arXiv(2022).

    [33] J. C. Li, Y. L. Li, Y. X. Dong, Y. D. Yang, J. L. Xiao, Y. Z. Huang. 400  Gb/s physical random number generation based on deformed square self-chaotic lasers. Chin. Opt. Lett., 21, 061901(2023).

    [34] Z. Z. Shen, M. Tang, Y. L. Chen, Y. Z. Huang. Unidirectional emission and nanoparticle detection in a deformed circular square resonator. Opt. Express, 29, 1666-1677(2021).

    [35] H. E. Tureci, H. G. L. Schwefel, A. D. Stone, E. E. Narimanov. Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities. Opt. Express, 10, 752-776(2002).

    [36] S. Wang, S. Liu, Y. Liu, S. Xiao, Z. Wang, Y. Fan, J. Han, L. Ge, Q. Song. Direct observation of chaotic resonances in optical microcavities. Light Sci. Appl., 10, 135(2021).

    [37] H. Long, Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, L. X. Zou, B. W. Liu. Dual-transverse-mode microsquare lasers with tunable wavelength interval. Opt. Lett., 40, 3548-3551(2015).

    [38] L. A. Coldren, Scott W. Corzine, M. L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits(2012).

    [39] T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, A. Gavrielides. Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms. Phys. Rev. E, 67, 066214(2003).

    [40] A. Tabaka, K. Panajotov, I. Veretennicoff, M. Sciamanna. Bifurcation study of regular pulse packages in laser diodes subject to optical feedback. Phys. Rev. E, 70, 036211(2004).

    [41] F. Y. Lin, Y. K. Chao, T. C. Wu. Effective bandwidths of broadband chaotic signals. IEEE J. Quantum Electron., 48, 1010-1014(2012).

    [42] P. Li, Q. Cai, J. G. Zhang, B. J. Xu, Y. M. Liu, A. Bogris, K. A. Shore, Y. C. Wang. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter. Opt. Express, 27, 17859-17867(2019).

    [43] Y. Z. Hao, C. G. Ma, Z. Z. Shen, J. C. Li, J. L. Xiao, Y. D. Yang, Y. Z. Huang. Comparison of single- and dual-mode lasing states of a hybrid-cavity laser under optical feedback. Opt. Lett., 46, 2115-2118(2021).

    [44] C. G. Ma, J. L. Wu, J. L. Xiao, Y. T. Huang, Y. L. Li, Y. D. Yang, Y. Z. Huang. Wideband chaos generation based on a dual-mode microsquare laser with optical feedback. Chin. Opt. Lett., 19, 111401(2021).

    [45] Y. L. Li, C. G. Ma, J. L. Xiao, T. Wang, J. L. Wu, Y. D. Yang, Y. Z. Huang. Wideband chaotic tri-mode microlasers with optical feedback. Opt. Express, 30, 2122-2130(2022).

    [46] B. Boashash. Time-Frequency Signal Analysis and Processing(2016).

    [47] F. Tan, M. K. Wu, M. Liu, M. Feng, N. Holonyak. Relative intensity noise in high speed microcavity laser. Appl. Phys. Lett., 103, 141116(2013).

    Jian-Cheng Li, Jin-Long Xiao, Yue-De Yang, You-Ling Chen, Yong-Zhen Huang. Nonlinear dynamics in a circular-sided square microcavity laser[J]. Photonics Research, 2023, 11(11): A97
    Download Citation