[1] KUMAR A, GUPTA M, PITCHAPPA P, et al. Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6 G communication[J]. Nature Communications, 13, 5404(2022).
[2] CABANES V D, VAN DYCK C, OSELLA S, et al. Challenges for incorporating optical switchability in organic-based electronic devices[J]. ACS Applied Materials & Interfaces, 13, 27737-27748(2021).
[5] TAKAHASHI M, YAMASAKI S, UCHIDA Y, et al. Compact and low-loss ZrO2-SiO2 PLC-Based 8 × 8 multicast switch for CDC-ROADM application[J]. Journal of Lightwave Technology, 34, 1712-1716(2016).
[6] KUDO M, OHTA S, TAGUCHI E, et al. A proposal of Mach-Zehnder mode/wavelength multi/demultiplexer based on Si/silica hybrid PLC platform[J]. Optics Communications, 433, 168-172(2019).
[7] HONJO T, INOUE K, SAHARA A, et al. Quantum key distribution experiment through a PLC matrix switch[J]. Optics Communications, 263, 120-123(2006).
[8] CHERCHI M, HARJANNE M, YLINEN S, et al. Flattop MZI filters: a novel robust design based on MMI splitters[C]Proceedings of SPIE 9752, Silicon Photonics XI. San Francisco: SPIE, 2016: 975210.
[9] NIRAULA B B, RIZAL C. Design of a 2 × 4 Hybrid MMI-MZI configuration with MMI phase-shifters[J]. Materials, 12, 1555(2019).
[10] WANG J, YI J, GUO L J, et al. Improved silica-PLC Mach-Zehnder interferometer type optical switches with error dependence compensation of directional coupler[J]. Optics & Laser Technology, 89, 208-213(2017).
[12] DUAN F, CHEN K, CHEN D, et al. Low-power and high-speed 2 × 2 thermo-optic MMI-MZI switch with suspended phase arms and heater-on-slab structure[J]. Optics Letters, 46, 234-237(2021).
[15] CHEN J, FENG J J, LIU H P, et al. Femtosecond laser modification of silica optical waveguides for potential bragg gratings sensing[J]. Materials, 15, 6220(2022).
[16] SUN X Y, FENG J J, ZHONG L M, et al. Silicon nitride based polarization-independent 4 × 4 optical matrix switch[J]. Optics & Laser Technology, 119, 105641(2019).
[17] DING M S, WONFOR A, CHENG Q X, et al. Hybrid MZI-SOA InGaAs/InP photonic integrated switches[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 3600108(2018).
[18] SUZUKI K, KONOIKE R, SUDA S, et al. Low-loss, low-crosstalk, and large-scale optical switch based on silicon photonics[J]. Journal of Lightwave Technology, 38, 233-239(2020).
[19] SUZUKI K, KONOIKE R, HASEGAWA J, et al. Low-insertion-loss and power-efficient 32 × 32 silicon photonics switch with extremely high-Δ Silica PLC connector[J]. Journal of Lightwave Technology, 37, 116-122(2019).
[20] GAO L, SUN J, SUN X Q, et al. Simulation and optimization of a polymer 2×2 multimode interference-Mach Zehnder interferometer electro-optic switch with push–pull electrodes[J]. Optics & Laser Technology, 42, 85-92(2010).
[21] LIAO M, WU B, Huang W, et al. Synchronous driving scheme for silicon-based optical switches to critically compensate for thermo-optic effect in carrier injection[J]. Applied Optics, 56, 205-210(2017).
[22] SHASTRI B J, TAIT A N, DE LIMA T F, et al. Photonics for artificial intelligence and neuromorphic computing[J]. Nature Photonics, 15, 102-114(2021).
[23] ZHOU H L, ZHAO Y H, WANG X, et al. Selflearning photonic signal process with an optical neural wk chip[Z]. ACS Photonics, 2020, 7: 792 799.
[24] TANIZAWA K, SUZUKI K, TOYAMA M, et al. Ultra-compact 32×32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer[J]. Optics Express, 23, 17599-17606(2015).
[25] SHOKRANEH F, GEOFFROY-GAGNON S, LIBOIRON-LADOUCEUR O. The diamond mesh, a phase-error- and loss-tolerant field-programmable MZI-based optical processor for optical neural networks[J]. Optics Express, 28, 23495-23508(2020).
[26] DIEMEER M B J. Polymeric thermo-optic space switches for optical communications[J]. Optical Materials, 9, 192-200(1998).
[27] SOLDANO L B, PENNINGS E C M. Optical multi-mode interference devices based on self-imaging: principles and applications[J]. Journal of Lightwave Technology, 13, 615-627(1995).