• High Power Laser Science and Engineering
  • Vol. 10, Issue 3, 03000e20 (2022)
Yirui Wang1, Jing Wang1、*, Jingui Ma1, Peng Yuan1, and Liejia Qian1、2
Author Affiliations
  • 1School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
  • 2Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai200240, China
  • show less
    DOI: 10.1017/hpl.2022.10 Cite this Article Set citation alerts
    Yirui Wang, Jing Wang, Jingui Ma, Peng Yuan, Liejia Qian. Numerical study of spatial chirp distortion in quasi-parametric chirped-pulse amplification[J]. High Power Laser Science and Engineering, 2022, 10(3): 03000e20 Copy Citation Text show less

    Abstract

    Optical parametric chirped-pulse amplification is inevitably subject to high-order spatial chirp, particularly under the condition of saturated amplification and a Gaussian pump; this corresponds to an irreversible spatiotemporal distortion and consequently degrades the maximum attainable focused intensity. In this paper, we reveal that such spatial chirp distortion can be significantly mitigated in quasi-parametric chirped-pulse amplification (QPCPA) with idler absorption. Simulation results show that the quality of focused intensity in saturated QPCPA is nearly ideal, with a spatiotemporal Strehl ratio higher than 0.98. As the seed bandwidth increases, the idler absorption spectrum may not be uniform, but the Strehl ratio in QPCPA can be still high enough due to stronger idler absorption.
    $$\begin{align}\frac{\partial {A}_{\text{i}}}{\partial z}&+\sum \limits_{{\textit{n}}=1}^{\infty}\frac{{\left(-1\right)}^{{\textit{n}}-1}}{n!}{k}^{({\textit{n}})}\frac{\partial^{\textit{n}}{A}_{\text{i}}}{\partial {t}^{\textit{n}}}+\frac{i}{2{k}_{\text{i}}}\frac{\partial^2{A}_{\text{i}}}{\partial {x}^2}+{\rho}_{\text{i}}\frac{\partial {A}_{\text{i}}}{\partial x} \nonumber\\ &\quad =i\frac{\omega_{\text{i}}{d}_{{\text{eff}}}}{n_{\text{ic}}}{A}_{\text{p}}{A}_{\text{s}}^{\ast }{e}^{{\textit{i}}\Delta {\textit{kz}}}-\frac{\alpha_{\text{i}}}{2}{A}_{\text{i}}, \nonumber \\ \frac{\partial {A}_{\text{s}}}{\partial z}&+\sum \limits_{{\textit{n}}=1}^{\infty}\frac{{\left(-1\right)}^{{\textit{n}}-1}}{n!}{k}^{({\textit{n}})}\frac{\partial^{\textit{n}}{A}_{\text{s}}}{\partial {t}^{\textit{n}}}+\frac{i}{2{k}_{\text{s}}}\frac{\partial^2{A}_{\text{s}}}{\partial {x}^2}+{\rho}_{\text{s}}\frac{\partial {A}_{\text{s}}}{\partial x}\nonumber\\ &\quad =i\frac{\omega_{\text{s}}{d}_{{\text{eff}}}}{n_{\text{sc}}}{A}_{\text{p}}{A}_{\text{i}}^{\ast }{e}^{{\textit{i}}\Delta {\textit{kz}}}, \nonumber \\ \frac{\partial {A}_{\text{p}}}{\partial z}&+\sum \limits_{{\textit{n}}=1}^{\infty}\frac{{\left(-1\right)}^{{\textit{n}}-1}}{n!}{k}^{({\textit{n}})}\frac{\partial^{\textit{n}}{A}_{\text{p}}}{\partial {t}^{\textit{n}}}+\frac{i}{2{k}_{\text{p}}}\frac{\partial^2{A}_{\text{p}}}{\partial {x}^2}+{\rho}_{\text{p}}\frac{\partial {A}_{\text{p}}}{\partial x}\nonumber\\ &\quad =i\frac{\omega_{\text{p}}{d}_{{\text{eff}}}}{n_{\text{pc}}}{A}_{\text{s}}{A}_{\text{i}}{e}^{-{\textit{i}}\Delta {\textit{kz}}}.\end{align}$$ ((1))

    View in Article

    $$\begin{align}g=\sqrt{g_0^2+\frac{\alpha_{\rm i}^2}{16}-\frac{\Delta {k}^2}{4}}-\frac{\alpha_{\rm i}}{4},\kern1em \mathrm{with}\;{g}_0=\sqrt{\frac{2{\omega}_{\rm s}{\omega}_{\rm i}{d}_{\rm eff}^2{I}_{\rm p0}}{\varepsilon_0{n}_{\rm s}{n}_{\rm i}{n}_{\rm p}{c}^3}},\end{align}$$ ((2))

    View in Article

    $$\begin{align}{I}_{\rm s}\left(x,t\right)=\frac{\omega_{\rm s}}{\omega_{\rm p}}{I}_{\rm p}\left(x,t\right).\end{align}$$ ((3))

    View in Article

    $$\begin{align} \mathrm{SR}= \frac{\max \left\{{\left|\iint a\left(x,\omega \right)\exp \left(-{ik}_xx\right)\exp \left( i\omega t\right) \textrm{d}x\textrm{d}\omega \right|}^2\right\}}{\max \left\{{\left|\iint \mu {\sum}_{\omega }a\left(x,\omega \right){\sum}_xa\Big(x,\omega \Big)\exp \left(-{ik}_xx\right)\exp \left( i\omega t\right) \textrm{d}x\textrm{d}\omega \right|}^2\right\}},\end{align}$$ ((4))

    View in Article

    $$\begin{align}{\xi}_{x\lambda}=\frac{\partial \lambda }{\partial x}\ne {\rm const},\end{align}$$ ((5))

    View in Article

    Yirui Wang, Jing Wang, Jingui Ma, Peng Yuan, Liejia Qian. Numerical study of spatial chirp distortion in quasi-parametric chirped-pulse amplification[J]. High Power Laser Science and Engineering, 2022, 10(3): 03000e20
    Download Citation