• Frontiers of Optoelectronics
  • Vol. 8, Issue 1, 1 (2015)
Hou-Tong CHEN*
Author Affiliations
  • Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
  • show less
    DOI: 10.1007/s12200-014-0436-0 Cite this Article
    Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Frontiers of Optoelectronics, 2015, 8(1): 1 Copy Citation Text show less
    References

    [1] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi-USSR, 1968, 10(4): 509–514

    [2] Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084

    [3] Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776

    [4] Wu D M, Fang N, Sun C, Zhang X, PadillaWJ, Basov D N, Smith D R, Schultz S. Terahertz plasmonic high pass filter. Applied Physics Letters, 2003, 83(1): 201–203

    [5] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187

    [6] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79

    [7] Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969

    [8] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537

    [9] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782

    [10] Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780

    [11] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980

    [12] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X. Terahertz magnetic response from artificial materials. Science, 2004, 303(5663): 1494–1496

    [13] Moser H O, Casse B D F, Wilhelmi O, Saw B T. Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. Physical Review Letters, 2005, 94(6): 063901

    [14] Linden S, Enkrich C,Wegener M, Zhou J, Koschny T, Soukoulis C M. Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700): 1351–1353

    [15] Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V. Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30(24): 3356–3358

    [16] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J. Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005, 95(13): 137404

    [17] Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901

    [18] Chen H T, O’Hara J F, Azad A K, Taylor A J. Manipulation of terahertz radiation using metamaterials. Laser & Photonics Reviews, 2011, 5(4): 513–533

    [19] Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M. Broadband terahertz generation from metamaterials. Nature Communications, 2014, 5: 3055

    [20] Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33

    [21] Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105

    [22] Azad A K, Dai J, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Optics Letters, 2006, 31(5): 634–636

    [23] Chen H T, O’Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Complementary planar terahertz metamaterials. Optics Express, 2007, 15(3): 1084–1095

    [24] Singh R, Smirnova E, Taylor A J, O’Hara J F, Zhang W. Optically thin terahertz metamaterials. Optics Express, 2008, 16(9): 6537–6543

    [25] Chiam S Y, Singh R, Gu J Q, Han J G, Zhang W L, Bettiol A A. Increased frequency shifts in high aspect ratio terahertz split ring resonators. Applied Physics Letters, 2009, 94(6): 064102

    [26] Chiam S Y, Singh R, Zhang W L, Bettiol A A. Controlling metamaterial resonances via dielectric and aspect ratio effects. Applied Physics Letters, 2010, 97(19): 191906

    [27] O’Hara J F, Singh R, Brener I, Smirnova, Han J, TaylorA J, Zhang W. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008, 16(3): 1786–1795

    [28] Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R. Tuned permeability in terahertz split-ring resonators for devices and sensors. Applied Physics Letters, 2007, 91(6): 062511

    [29] Chen H T, Yang H, Singh R, O’Hara J F, Azad A K, Trugman S A, Jia Q X, Taylor A J. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Physical Review Letters, 2010, 105(24): 247402

    [30] Katsarakis N, Konstantinidis G, Kostopoulos A, Penciu R S, Gundogdu T F, Kafesaki M, Economou E N, Koschny T, Soukoulis C M. Magnetic response of split-ring resonators in the far-infrared frequency regime. Optics Letters, 2005, 30(11): 1348–1350

    [31] Quan B G, Xu X L, Yang H F, Xia X X,Wang Q,Wang L, Gu C Z, Li C, Li F. Time-resolved broadband analysis of split ring resonators in terahertz region. Applied Physics Letters, 2006, 89(4): 041101

    [32] Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Kuhl J, Giessen H. On the reinterpretation of resonances in split-ring-resonators at normal incidence. Optics Express, 2006, 14(19): 8827–8836

    [33] Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Physical Review Letters, 2006, 96(10): 107401

    [34] Driscoll T, Andreev G O, Basov D N, Palit S, Ren T, Mock J, Cho S Y, Jokerst N M, Smith D R. Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy. Applied Physics Letters, 2007, 90(9): 092508

    [35] Padilla W J, Aronsson M T, Highstrete C, Lee M, Taylor A J, Averitt R D. Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Physical Review B, 2007, 75(4): 041102

    [36] Padilla W J. Group theoretical description of artificial electromagnetic metamaterials. Optics Express, 2007, 15(4): 1639–1646

    [37] O’Hara J F, Smirnova E, Azad A K, Chen H-T, Taylor A J. Effects of microstructure variations on macroscopic terahertz metafilm properties. Active and Passive Electronic Components, 2007, 2007: 49691

    [38] O’Hara J F, Smirnova E, Chen H T, Taylor A J, Averitt R D, Highstrete C, LeeM, PadillaW J. Properties of planar electric metamaterials for novel terahertz applications. Journal of Nanoelectronics and Optoelectronics, 2007, 2(1): 90–95

    [39] Azad A K, Taylor A J, Smirnova E, O’Hara J F. Characterization and analysis of terahertz metamaterials based on rectangular splitring resonators. Applied Physics Letters, 2008, 92(1): 011119

    [40] Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N, Zheludev N I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Physical Review Letters, 2007, 99(14): 147401

    [41] Singh R, Al-Naib I A I, Koch M, Zhang W. Sharp Fano resonances in THz metamaterials. Optics Express, 2011, 19(7): 6312–6319

    [42] Munk B A. Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons, 2000

    [43] Smith D R, Vier D C, Koschny T, Soukoulis CM. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71(3): 036617

    [44] Holloway C L, Kuester E F, Gordon J A, O’Hara J, Booth J, Smith D R. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35

    [45] Chen H T. Interference theory of metamaterial perfect absorbers. Optics Express, 2012, 20(7): 7165–7172

    [46] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402

    [47] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, PadillaW J. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 2008, 16(10): 7181–7188

    [48] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla WJ. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 2009, 79(12): 125104

    [49] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Physical Review B, 2008, 78(24): 241103

    [50] Diem M, Koschny T, Soukoulis CM.Wide-angle perfect absorber/thermal emitter in the terahertz regime. Physical Review B, 2009, 79(3): 033101

    [51] Shchegolkov D Y, Azad A K, O’Hara J F, Simakov E I. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Physical Review B, 2010, 82(20): 205117

    [52] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Applied Physics Letters, 2009, 95(24): 241111

    [53] Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. Journal of the Optical Society of America. B, 2010, 27(3): 498–504

    [54] Tao H, Bingham C M, Pilon D, Fan K B, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D. A dual band terahertz metamaterial absorber. Journal of Physics. D, 2010, 43(22): 225102

    [55] Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J. Tripleband terahertz metamaterial absorber: design, experiment, and physical interpretation. Applied Physics Letters, 2012, 101(15): 154102

    [56] Huang L, Chowdhury D R, Ramani S, ReitenMT, Luo S N, Taylor A J, Chen H T. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Optics Letters, 2012, 37(2): 154–156

    [57] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Azad A K, Taylor A J, Chen H T. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Applied Physics Letters, 2012, 101(10): 101102

    [58] Wen Q Y, Xie Y S, Zhang H W, Yang Q H, Li Y X, Liu Y L. Transmission line model and fields analysis of metamaterial absorber in the terahertz band. Optics Express, 2009, 17(22): 20256–20265

    [59] Chen H T, Zhou J, O’Hara J F, Chen F, AzadA K, TaylorA J. Antireflection coating using metamaterials and identification of its mechanism. Physical Review Letters, 2010, 105(7): 073901

    [60] Chen H T, Zhou J F, O’Hara J F, TaylorA J. A numerical investigation of metamaterial antireflection coatings. Terahertz Science and Technology, 2010, 3(2): 66–73

    [61] Strikwerda A C, Fan K, Tao H, Pilon D V, Zhang X, Averitt R D. Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies. Optics Express, 2009, 17(1): 136–149

    [62] Peralta X G, Smirnova E I, Azad A K, Chen H T, Taylor A J, Brener I, O’Hara J F. Metamaterials for THz polarimetric devices. Optics Express, 2009, 17(2): 773–783

    [63] Cong L Q, Cao W, Tian Z, Gu J Q, Han J G, Zhang W L. Manipulating polarization states of terahertz radiation using metamaterials. New Journal of Physics, 2012, 14(11): 115013

    [64] Zalkovskij M, Malureanu R, Kremers C, Chigrin D N, Novitsky A, Zhukovsky S, Tang P T, Jepsen P U, Lavrinenko A V. Optically active Babinet planar metamaterial film for terahertz polarization manipulation. Laser & Photonics Reviews, 2013, 7(5): 810–817

    [65] Markovich D L, Andryieuski A, Zalkovskij M, Malureanu R, Lavrinenko A V. Metamaterial polarization converter analysis: limits of performance. Applied Physics B, , 2013, 112(2): 143–152

    [66] Chiang Y J, Yen T J. A composite-metamaterial-based terahertzwave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Applied Physics Letters, 2013, 102(1): 011129

    [67] Weis P, Paul O, Imhof C, Beigang R, Rahm M. Strongly birefringent metamaterials as negative index terahertz wave plates. Applied Physics Letters, 2009, 95(17): 171104

    [68] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337

    [69] Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Advanced Materials, 2013, 25(33): 4567–4572

    [70] Neu J, Beigang R, Rahm M. Metamaterial-based gradient index beam steerers for terahertz radiation. Applied Physics Letters, 2013, 103(4): 041109

    [71] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304–1307

    [72] Cong L Q, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G, Zhang W L. A perfect metamaterial polarization rotator. Applied Physics Letters, 2013, 103(17): 171107

    [73] Cong L Q, Xu N N, Gu J Q, Singh R, Han J G, ZhangWL. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser & Photonics Reviews, 2014: Early View

    [74] Hu D, Wang X K, Feng S F, Ye J S, Sun W F, Kan Q, Klar P J, Zhang Y. Ultrathin terahertz planar elements. Advanced Optical Materials, 2013, 1(2): 186–191

    [75] Jiang X Y, Ye J S, He J W, Wang X K, Hu D, Feng S F, Kan Q, Zhang Y. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Optics Express, 2013, 21(24): 30030–30038

    [76] Burckel D B, Wendt J R, Ten Eyck G A, Ginn J C, Ellis A R, Brener I, Sinclair M B. Micrometer-scale cubic unit cell 3D metamaterial layers. Advanced Materials, 2010, 22(44): 5053–5057

    [77] Randhawa J S, Gurbani S S, Keung M D, Demers D P, Leahy-HoppaMR, Gracias D H. Three-dimensional surface current loops in terahertz responsive microarrays. Applied Physics Letters, 2010, 96(19): 191108

    [78] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530

    [79] Moser H O, Rockstuhl C. 3D THz metamaterials from micro/nanomanufacturing. Laser & Photonics Reviews, 2012, 6(2): 219–244

    [80] Choi M, Lee S H, Kim Y, Kang S B, Shin J, KwakMH, Kang K Y, Lee Y H, Park N, Min B. A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470(7334): 369–373

    [81] Kadow C, Fleischer S B, Ibbetson J P, Bowers J E, Gossard A C, Dong J W, Palmstrom C J. Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics. Applied Physics Letters, 1999, 75(22): 3548–3550

    [82] Chen H T, PadillaWJ, Zide JMO, Bank S R, Gossard A C, Taylor A J, Averitt R D. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Optics Letters, 2007, 32(12): 1620–1622

    [83] Roy Chowdhury D, Singh R, O’Hara J F, Chen H T, TaylorA J, AzadA K. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor. Applied Physics Letters, 2011, 99(23): 231101

    [84] Takano K, Shibuya K, Akiyama K, Nagashima T, Miyamaru F, Hangyo M. A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region. Journal of Applied Physics, 2010, 107(2): 024907

    [85] Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J, Zhang W. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nature Communications, 2012, 3: 1151

    [86] Roy Chowdhury D, Singh R, Taylor A J, Chen H T, Azad A K. Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial. Applied Physics Letters, 2013, 102(1): 011122

    [87] Chen H T, O’Hara J F, Azad A K, Taylor A J, Averitt R D, ShrekenhamerD B, PadillaW J. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics, 2008, 2(5): 295–298

    [88] Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N, Soukoulis C M. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B, 2009, 79(16): 161102

    [89] Shen N H, Massaouti M, Gokkavas M, Manceau J M, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis C M. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 2011, 106(3): 037403

    [90] Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X. Photoinduced handedness switching in terahertz chiral metamolecules. Nature Communications, 2012, 3: 942

    [91] Zhang S, Park Y S, Li J, Lu X, Zhang W, Zhang X. Negative refractive index in chiral metamaterials. Physical Review Letters, 2009, 102(2): 023901

    [92] Zhou J F, Chowdhury D R, Zhao R K, Azad A K, Chen H T, Soukoulis C M, Taylor A J, O’Hara J F. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Physical Review B, 2012, 86(3): 035448

    [93] Fan K B, Zhao X G, Zhang J D, Geng K, Keiser G R, Seren H R, Metcalfe G D, Wraback M, Zhang X, Averitt R D. Optically tunable terahertz metamaterials on highly flexible substrates. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 702–708

    [94] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597–600

    [95] Chen H T, PadillaWJ, Cich M J, Azad A K, Averitt R D, Taylor A J. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151

    [96] Chen H T, Palit S, Tyler T, Bingham CM, Zide J MO, O’Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, JokerstN M, TaylorA J. Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Applied Physics Letters, 2008, 93(9): 091117

    [97] Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S, PadillaWJ. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Optics Express, 2011, 19(10): 9968–9975

    [98] Chen H T, Lu H, Azad A K, Averitt R D, Gossard A C, Trugman S A, O’Hara J F, Taylor A J. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Optics Express, 2008, 16(11): 7641–7648

    [99] Paul O, Imhof C, Lagel B, Wolff S, Heinrich J, Hofling S, Forchel A, Zengerle R, Beigang R, Rahm M. Polarization-independent active metamaterial for high-frequency terahertz modulation. Optics Express, 2009, 17(2): 819–827

    [100] Peralta X G, Brener I, PadillaWJ, Young EW, Hoffman A J, Cich M J, Averitt R D, Wanke M C, Wright J B, Chen H T, O’Hara J F, Taylor A J, Waldman J, Goodhue W D, LiJ, RenoJ. External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials. Metamaterials, 2010, 4(2–3): 83–88

    [101] ChanWL, Chen H T, Taylor A J, Brener I, Cich M J, Mittleman D M. A spatial light modulator for terahertz beams. Applied Physics Letters, 2009, 94(21): 213511

    [102] Shrekenhamer D, Montoya J, Krishna S, Padilla W J. Four-color metamaterial absorber THz spatial light modulator. Advanced Optical Materials, 2013, 1(12): 905–909

    [103] Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range. Applied Physics Letters, 2014, 104(9): 091115

    [104] Fan K, Hwang H Y, Liu M, Strikwerda A C, Sternbach A, Zhang J, Zhao X, Zhang X, Nelson K A, Averitt R D. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs. Physical Review Letters, 2013, 110(21): 217404

    [105] Scalari G, Maissen C, Turcinková D, Hagenmüller D, De Liberato S, Ciuti C, Reichl C, Schuh D, Wegscheider W, Beck M, Faist J. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 2012, 335(6074): 1323–1326

    Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Frontiers of Optoelectronics, 2015, 8(1): 1
    Download Citation