[1] Chu Y B, Li J Y. Research progress and development trend of broadband amplified optical fiber[J]. Chinese Journal of Luminescence, 43, 1678-1689(2022).
[2] Chu Y B, Lou Y, Chen Y et al. Ultra-broadband, high gain, and low noise extended L-band erbium-doped fiber and its amplification performance[J]. Chinese Journal of Lasers, 48, 0715001(2021).
[3] Lin M B, Ruan J Y, Lao H X et al. L-band extended EDFA co-pumped by backward ASE[J]. Laser & Optoelectronics Progress, 61, 1706003(2024).
[4] Gu Z M, Chu Y B, Hu X W et al. Study on erbium-doped fiber with high absorption, high efficiency and low cluster and its amplification performance[J]. Chinese Journal of Lasers, 49, 0716003(2022).
[5] Xue W Y. Development and prospect of modern communication technology[J]. Information & Communications, 28, 223(2015).
[6] Dvoyrin V V, Mashinsky V M, Dianov E M et al. Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres[C], 949-950(2005).
[7] Wang Y, Wang S Y, Halder A et al. (INVITED) Bi-doped optical fibers and fiber amplifiers[J]. Optical Materials: X, 17, 100219(2023).
[8] Thipparapu N K, Wang Y, Wang S et al. Bi-doped fiber amplifiers and lasers[J]. Optical Materials Express, 9, 2446(2019).
[9] Fujimoto Y. Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass[J]. Journal of the American Ceramic Society, 93, 581-589(2010).
[10] Yin X K, He L, Liu S K et al. Bismuth doped phosphosilicate fiber for O+E band amplification[J]. Chinese Journal of Lasers, 51, 0206002(2024).
[11] Cao J K, Wondraczek L, Wang Y F et al. Ultrabroadband near-infrared photoemission from bismuth-centers in nitridated oxide glasses and optical fiber[J]. ACS Photonics, 5, 4393-4401(2018).
[12] Luo Y H, Yan B B, Zhang J Z et al. Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications[J]. Frontiers of Optoelectronics, 11, 37-52(2018).
[13] Firstov S V, Alyshev S V, Riumkin K E et al. Laser-active fibers doped with bismuth for a wavelength region of 1.6–1.8 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0902415(2018).
[14] Wang Y, Halder A, Richardson D J et al. A highly temperature-insensitive Bi-doped fiber amplifier in the E+S-band with 20 dB flat gain from 1435-1475 nm[C](2023).
[15] Vakhrushev A S, Umnikov A A, Lobanov A S et al. W-type and graded-index bismuth-doped fibers for efficient lasers and amplifiers operating in E-band[J]. Optics Express, 30, 1490-1498(2022).
[16] Donodin A, Manuylovich E, Dvoyrin V et al. Pump optimization of E-band bismuth-doped fiber amplifier[C](2023).
[17] Firstov S V, Alyshev S V, Riumkin K E et al. Bismuth-doped fibre amplifier operating between 1600 and 1800 nm[J]. Quantum Electronics, 45, 1083-1085(2015).
[18] Donodin A, Dvoyrin V, Manuylovich E et al. Bismuth doped fibre amplifier operating in E- and S- optical bands[J]. Optical Materials Express, 11, 127-135(2020).
[19] Wang S Y, Zhai Z W, Halder A et al. Bi-doped fiber amplifiers in the E+S band with a high gain per unit length[J]. Optics Letters, 48, 5635-5638(2023).
[20] Firstov S V, Alyshev S V, Riumkin K E et al. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band[J]. Scientific Reports, 6, 28939(2016).
[21] Guo M T, Tian J M, Wang F et al. E+S band amplifier output based on germanosilicate bismuth-doped fibers[J]. Chinese Journal of Lasers, 50, 0616002(2023).
[22] Liu S K, He L, Yin X K et al. Research on high absorption germanosilicate Bi-doped fiber and its gain performance[J]. Chinese Journal of Lasers, 51, 0206005(2024).
[23] Liu Y H. Research on large mode field single mode operation of ytterbium doped fiber[D], 18-19(2019).