• Photonics Research
  • Vol. 11, Issue 10, 1781 (2023)
You-Long Chen1,2,3, Yi-Hua Hu1,2,3,4,*, Xing Yang1,2,3, You-Lin Gu1,2,3..., Xin-Yu Wang1,2,3, Yu-Hao Xia1,2,3, Xin-Yuan Zhang1,2,3 and Yu-Shuang Zhang1,2,3,5,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China
  • 2Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology, Hefei 230037, China
  • 3Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
  • 4e-mail: skl_hyh@163.com
  • 5e-mail: yszhang@hnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.495683 Cite this Article Set citation alerts
    You-Long Chen, Yi-Hua Hu, Xing Yang, You-Lin Gu, Xin-Yu Wang, Yu-Hao Xia, Xin-Yuan Zhang, Yu-Shuang Zhang, "Plasmon-enhanced fluorescence of gold nanoparticle/graphene quantum dots for detection of Cr3+ ions," Photonics Res. 11, 1781 (2023) Copy Citation Text show less
    References

    [1] K. Zhao, L. Ge, T. I. Wong, X. Zhou, G. Lisak. Gold-silver nanoparticles modified electrochemical sensor array for simultaneous determination of chromium(III) and chromium(VI) in wastewater samples. Chemosphere, 281, 130880(2021).

    [2] Y. Wang, Y. Ma, Q. Zhao, L. Hou, Z. Han. Polyoxometalate-based crystalline catalytic materials for efficient electrochemical detection of Cr(VI). Sens. Actuators B, 305, 127469(2020).

    [3] S. Zhao, X. Lai, F. Liu, L. Chen. Carbon dots combined with masking agent for high selectivity detection of Cr(VI) to overcome interference associated challenges. Ecotoxicol. Environ. Safety, 244, 114069(2022).

    [4] T. P. Rao, S. Karthikeyan, B. Vijayalekshmy, C. S. P. Iyer. Speciative determination of chromium(VI) and chromium(III) using flow-injection on-line preconcentration and flame atomic-absorption spectrometric detection. Anal. Chim. Acta, 369, 69-77(1998).

    [5] S. A. Miscoria, C. Jacq, T. Maeder, R. M. Negri. Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media. Sens. Actuators B, 195, 294-302(2014).

    [6] S. K. Tammina, Y. L. Yang. Highly sensitive and selective detection of 4-nitrophenol, and on-off-on fluorescence sensor for Cr (VI) and ascorbic acid detection by glucosamine derived n-doped carbon dots. J. Photochem. Photobiol. A, 387, 112134(2020).

    [7] H. J. Lim, H. Jin, B. Chua, A. Son. Clustered detection of eleven phthalic acid esters by fluorescence of graphene quantum dots displaced from gold nanoparticles. ACS Appl. Mater. Interfaces, 14, 4186-4196(2022).

    [8] L. Xu, W.-Q. Huang, W. Hu, K. Yang, B.-X. Zhou, A. Pan, G.-F. Huang. Two-dimensional MoS2-graphene-based multilayer van der Waals heterostructures: enhanced charge transfer and optical absorption, and electric-field tunable Dirac point and band gap. Chem. Mater., 29, 5504-5512(2017).

    [9] S. Kim, S. W. Hwang, M.-K. Kim, D. Y. Shin, D. H. Shin, C. O. Kim, S. B. Yang, J. H. Park, E. Hwang, S.-H. Choi, G. Ko, S. Sim, C. Sone, H. J. Choi, S. Bae, B. H. Hong. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano, 6, 8203-8208(2012).

    [10] H. Kang, D. Y. Kim, J. Cho. Top-down fabrication of luminescent graphene quantum dots using self-assembled Au nanoparticles. ACS Omega, 8, 5885-5892(2023).

    [11] X. Duan, C. Wang, A. Pan, R. Yu, X. Duan. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev., 44, 8859-8876(2015).

    [12] C. Yu, Z. He, X. Song, Q. Liu, L. Gao, B. Yao, T. Han, X. Gao, Y. Lv, Z. Feng, S. Cai. High-frequency flexible graphene field-effect transistors with short gate length of 50  nm and record extrinsic cut-off frequency. Phys. Status Solidi R, 12, 1700435(2018).

    [13] C. Joyce, S. M. Fothergill, F. Xie. Recent advances in gold-based metal enhanced fluorescence platforms for diagnosis and imaging in the near-infrared. Mater. Today Adv., 7, 100073(2020).

    [14] A. Perveen, L. Deng, A. Muravitskaya, D. Yang, A. Movsesyan, S. Gaponenko, S. Chang, H. Zhong. Enhanced emission of in-situ fabricated perovskite-polymer composite films on gold nanoparticle substrates. Opt. Mater. Express, 10, 1659-1674(2020).

    [15] A. Minopoli, B. Della Ventura, B. Lenyk, F. Gentile, J. A. Tanner, A. Offenhaeusser, D. Mayer, R. Velotta. Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nat. Commun., 11, 6134(2020).

    [16] H. Cheng, Y. Lu, D. Zhu, L. Rosa, F. Han, M. Ma, W. Su, P. S. Francis, Y. Zheng. Plasmonic nanopapers: flexible, stable and sensitive multiplex PUF tags for unclonable anti-counterfeiting applications. Nanoscale, 12, 9471-9480(2020).

    [17] M. Tavakkoli Yaraki, M. Wu, E. Middha, W. Wu, S. Daqiqeh Rezaei, B. Liu, Y. N. Tan. Gold nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization towards effective image-guided photodynamic therapy. Nano-Micro Lett., 13, 58(2021).

    [18] A. Perveen, A. Movsesyan, S. M. Abubakar, F. Saeed, S. Hussain, A. Raza, Y. Xu, A. Subramanian, Q. Khan, W. Lei. In-situ fabricated and plasmonic enhanced MACsPbBr3-polymer composite perovskite film based UV photodetector. J. Mol. Struct., 1279, 134962(2023).

    [19] Y. X. Zhang, A. Dragan, C. D. Geddes. Broad wavelength range metal-enhanced fluorescence using nickel nanodeposits. J. Phys. Chem. C, 113, 15811-15816(2009).

    [20] T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. O. Ozel, Q. Zhang, Q. H. Xiong, H. V. Demir. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. Nano Lett., 13, 3065-3072(2013).

    [21] L. Ma, Y.-L. Chen, X.-P. Song, D.-J. Yang, H.-X. Li, S.-J. Ding, L. Xiong, P.-L. Qin, X.-B. Chen. Structure-adjustable gold nanoingots with strong plasmon coupling and magnetic resonance for improved photocatalytic activity and SERS. ACS Appl. Mater. Interfaces, 12, 38554-38562(2020).

    [22] L. Ma, Y.-L. Chen, D.-J. Yang, S.-J. Ding, L. Xiong, P.-L. Qin, X.-B. Chen. Gap-dependent plasmon coupling in Au/AgAu hybrids for improved SERS performance. J. Phys. Chem. C, 124, 25473-25479(2020).

    [23] L. Ma, Y.-L. Chen, D.-J. Yang, H.-X. Li, S.-J. Ding, L. Xiong, P.-L. Qin, X.-B. Chen. Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core-shell hybrids for efficient photocatalytic hydrogen generation. Nanoscale, 12, 4383-4392(2020).

    [24] L. Ma, Y.-L. Chen, X. Yang, H.-X. Li, S.-J. Ding, H.-Y. Hou, L. Xiong, P.-L. Qin, X.-B. Chen. Growth behavior of Au/Cu2-x S hybrids and their plasmon-enhanced dual-functional catalytic activity. CrystEngComm, 21, 5610-5617(2019).

    [25] Y. Shen, T. He, W. Wang, Y. Zhan, X. Hu, B. Yuan, X. Zhou. Fluorescence enhancement on silver nanoplates at the single- and sub-nanoparticle level. Nanoscale, 7, 20132-20141(2015).

    [26] G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, M. Chhowalla. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater., 22, 505-509(2010).

    [27] Y. Q. Sun, S. Q. Wang, C. Li, P. H. Luo, L. Tao, Y. Wei, G. Q. Shi. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys. Chem. Chem. Phys., 15, 9907-9913(2013).

    [28] M. K. Thakur, C.-Y. Fang, Y.-T. Yang, T. A. Effendi, P. K. Roy, R.-S. Chen, K. K. Ostrikov, W.-H. Chiang, S. Chattopadhyay. Microplasma-enabled graphene quantum dot-wrapped gold nanoparticles with synergistic enhancement for broad band photodetection. ACS Appl. Mater. Interfaces, 12, 28550-28560(2020).

    [29] G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, Y. F. Chen. Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots. Adv. Funct. Mater., 26, 620-628(2016).

    [30] P. Wang, Z. G. Liu, X. Chen, F. L. Meng, J. H. Liu, X. J. Huang. UV irradiation synthesis of an Au-graphene nanocomposite with enhanced electrochemical sensing properties. J. Mater. Chem. A, 1, 9189-9195(2013).

    [31] C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, S. Isoda, M. W. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, C. W. Chen. Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed., 51, 6662-6666(2012).

    [32] B. Park, S. J. Kim, J. S. Sohn, M. S. Nam, S. Kang, S. C. Jun. Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere. Nano Res., 9, 1866-1875(2016).

    [33] H. Zhang, S. Chen, X. Quan, H. Yu, H. Zhao. In situ controllable growth of noble metal nanodot on graphene sheet. J. Mater. Chem., 21, 12986-12990(2011).

    [34] R. R. Gaddam, S. Mukherjee, N. Punugupati, D. Vasudevan, C. R. Patra, R. Narayan, R. V. S. N. Kothapalli. Facile synthesis of carbon dot and residual carbon nanobeads: Implications for ion sensing, medicinal and biological applications. Mater. Sci. Eng. C, 73, 643-652(2017).

    [35] P. Byeongho, K. Sun Jun, S. Ji Soo, N. Min Sik, K. Shinill, J. Seong Chan. Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere. Nano Res., 9, 1866-1875(2016).

    [36] P. Anger, P. Bharadwaj, L. Novotny. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96, 113002(2006).

    [37] N. T. Lan, D. T. Chi, N. X. Dinh, N. D. Hung, H. Lan, P. A. Tuan, L. H. Thang, N. N. Trung, N. Q. Hoa, T. Q. Huy, N. V. Quy, T. T. Duong, V. N. Phan, A. T. Le. Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization. J. Alloys Compd., 615, 843-848(2014).

    [38] S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, X. Wang, H. Sun, B. Yang. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater., 22, 4732-4740(2012).

    [39] Q. Liu, B. Guo, Z. Rao, B. Zhang, J. R. Gong. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett., 13, 2436-2441(2013).

    [40] C. Mathioudakis, G. Kopidakis, P. C. Kelires, P. Patsalas, M. Gioti, S. Logothetidis. Electronic and optical properties of a-C from tight-binding molecular dynamics simulations. Thin Solid Films, 482, 151-155(2005).

    [41] C. W. Chen, J. Robertson. Nature of disorder and localization in amorphous carbon. J. Non-Cryst. Solids, 227, 602-606(1998).

    [42] L. Bao, Z. L. Zhang, Z. Q. Tian, L. Zhang, C. Liu, Y. Lin, B. P. Qi, D. W. Pang. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv. Mater., 23, 5801-5806(2011).

    [43] K. P. Loh, Q. L. Bao, G. Eda, M. Chhowalla. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem., 2, 1015-1024(2010).

    [44] S. J. Zhu, J. H. Zhang, C. Y. Qiao, S. J. Tang, Y. F. Li, W. J. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. N. Gao, H. T. Wei, H. Zhang, H. C. Sun, B. Yang. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun., 47, 6858-6860(2011).

    [45] D. Y. Pan, J. C. Zhang, Z. Li, M. H. Wu. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater., 22, 734-738(2010).

    [46] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun., 47, 6858-6860(2011).

    [47] J. Robertson. Recombination and photoluminescence mechanism in hydrogenated amorphous carbon. Phys. Rev. B, 53, 16302-16305(1996).

    [48] L. L. Li, G. H. Wu, G. H. Yang, J. Peng, J. W. Zhao, J. J. Zhu. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 5, 4015-4039(2013).

    [49] P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van den Brink, P. J. Kelly. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B, 79, 195425(2009).

    [50] S.-H. Song, M. Jang, H. Yoon, Y.-H. Cho, S. Jeon, B.-H. Kim. Size and pH dependent photoluminescence of graphene quantum dots with low oxygen content. RSC Adv., 6, 97990-97994(2016).

    [51] Z. Gao, L. Li, Y. Ge, Q. Chen. Enhanced AC magnetic properties of Fe-based soft magnetic composites coated with an electrically insulated SiO2-ZrO2 layer. J. Mater. Sci., 32, 14944-14955(2021).

    [52] P. Frach, H. Bartzsch, D. Gloess, M. Fahland, F. Haendel. Electrically insulating Al2O3 and SiO2 films for sensor and photovoltaic applications deposited by reactive pulse magnetron sputtering, hollow cathode arc activated deposition and magnetron-PECVD. Surf. Coat. Technol., 202, 5680-5683(2008).

    [53] H. A. Alluhaybi, S. K. Ghoshal, B. O. Alsobhi, W. N. W. Shamsuri. Electronic and optical correlation effects in bulk gold: role of spin-orbit coupling. Comput. Condens. Matter, 18, e00360(2019).

    [54] A. Dal Corso, A. M. Conte. Spin-orbit coupling with ultrasoft pseudopotentials: application to Au and Pt. Phys. Rev. B, 71, 115106(2005).

    [55] S. H. Cheng, T. M. Weng, M. L. Lu, W. C. Tan, J. Y. Chen, Y. F. Chen. All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep., 3, 2694(2013).

    [56] R. R. Ford. Work functions of gold and silver films—surface potentials of mercury and xenon. Trans. Faraday Soc., 67, 216-221(1971).

    [57] G. Konstantatos, E. H. Sargent. PbS colloidal quantum dot photoconductive photodetectors: transport, traps, and gain. Appl. Phys. Lett., 91, 2800805(2007).

    [58] B. L. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, C. W. Zhou. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown mono layer MoS2 transistors. ACS Nano, 8, 5304-5314(2014).

    [59] C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 8, 95-103(2014).

    [60] J. Li, Z. Wang, J. Yang, X. Xia, R. Yi, J. Jiang, W. Liu, J. Chen, L. Chen, J. Xu. “On-off-on” fluorescence switch of graphene quantum dots: a cationic control strategy. Appl. Surf. Sci., 546, 149110(2021).

    [61] J. Yang, P. Li, Z. Song, J. Li, H. Yang, F. Yan, L. Li, C. Xu, J. Chen, L. Chen. Graphene quantum dots via ion modification for improving photoluminescence stability in aqueous solution with heavy metal ions. Appl. Surf. Sci., 593, 153367(2022).

    [62] T. Y. Gu, M. Dai, D. J. Young, Z. G. Ren, J. P. Lang. Luminescent Zn(II) coordination polymers for highly selective sensing of Cr(III) and Cr(VI) in water. Inorg. Chem., 56, 4668-4678(2017).

    You-Long Chen, Yi-Hua Hu, Xing Yang, You-Lin Gu, Xin-Yu Wang, Yu-Hao Xia, Xin-Yuan Zhang, Yu-Shuang Zhang, "Plasmon-enhanced fluorescence of gold nanoparticle/graphene quantum dots for detection of Cr3+ ions," Photonics Res. 11, 1781 (2023)
    Download Citation