• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 3, 747 (2022)
LIU Xiaopeng1、*, WANG Wei1, ZHOU Wencai1, YU Hao1, QI Shuai1, WANG Chuanshen1, and MA Liyun1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    LIU Xiaopeng, WANG Wei, ZHOU Wencai, YU Hao, QI Shuai, WANG Chuanshen, MA Liyun. Research Progress on Spectral-Selective Materials for Passive Cooling of Solar Photovoltaics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 747 Copy Citation Text show less
    References

    [1] GARNETT E C, EHRLER B, POLMAN A, et al. Photonics for photovoltaics: advances and opportunities[J]. ACS Photonics, 2021, 8(1): 61-70.

    [2] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519.

    [3] LI R Y, SHI Y, WU M C, et al. Photovoltaic panel cooling by atmospheric water sorption-evaporation cycle[J]. Nature Sustainability, 2020, 3(8): 636-643.

    [4] SUN X S, SILVERMAN T J, ZHOU Z G, et al. Optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling[J]. IEEE Journal of Photovoltaics, 2017, 7(2): 566-574.

    [5] VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1): 149-154.

    [6] SINGH P, RAVINDRA N M. Temperature dependence of solar cell performance: an analysis[J]. Solar Energy Materials and Solar Cells, 2012, 101: 36-45.

    [7] CHANDRASEKAR M, SURESH S, SENTHILKUMAR T, et al. Passive cooling of standalone flat PV module with cotton wick structures[J]. Energy Conversion and Management, 2013, 71: 43-50.

    [9] TEO H G, LEE P S, HAWLADER M N A. An active cooling system for photovoltaic modules[J]. Applied Energy, 2012, 90(1): 309-315.

    [10] HUANG M J, EAMES P C, NORTON B. Thermal regulation of building-integrated photovoltaics using phase change materials[J]. International Journal of Heat and Mass Transfer, 2004, 47(12/13): 2715-2733.

    [11] BROWNE M C, NORTON B, MCCORMACK S J. Phase change materials for photovoltaic thermal management[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 762-782.

    [12] ALAMI A H. Effects of evaporative cooling on efficiency of photovoltaic modules[J]. Energy Conversion and Management, 2014, 77: 668-679.

    [13] STEIN J S, JORDAN D C. Glass-glass photovoltaic modules-overview of issues. 2018, Sandia National Laboratories.

    [15] ZHAO B, HU M K, AO X Z, et al. Spectrally selective approaches for passive cooling of solar cells: a review[J]. Applied Energy, 2020, 262: 114548.

    [16] LI W, SHI Y, CHEN K F, et al. A comprehensive photonic approach for solar cell cooling[J]. ACS Photonics, 2017, 4(4): 774-782.

    [17] LIU J, ZHOU Z, ZHANG J, et al. Advances and challenges in commercializing radiative cooling[J]. Materials Today Physics, 2019, 11: 100161.

    [18] ZHAO D L, AILI A, ZHAI Y, et al. Radiative sky cooling: fundamental principles, materials, and applications[J]. Applied Physics Reviews, 2019, 6(2): 021306.

    [20] LIU J W, TANG H J, ZHANG D B, et al. Performance evaluation of the hybrid photovoltaic-thermoelectric system with light and heat management[J]. Energy, 2020, 211: 118618.

    [21] PERRAKIS G, TASOLAMPROU A C, KENANAKIS G, et al. Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures[J]. Optics Express, 2020, 28(13): 18548-18565.

    [22] SLAUCH I M, DECEGLIE M G, SILVERMAN T J, et al. Model for characterization and optimization of spectrally selective structures to reduce the operating temperature and improve the energy yield of photovoltaic modules[J]. ACS Applied Energy Materials, 2019, 2(5): 3614-3623.

    [23] SLAUCH I M, DECEGLIE M G, SILVERMAN T J, et al. Spectrally selective mirrors with combined optical and thermal benefit for photovoltaic module thermal management[J]. ACS Photonics, 2018, 5(4): 1528-1538.

    [24] FAN G H, DUAN B Y, ZHANG Y Q, et al. Full-spectrum selective thin film based photonic cooler for solar cells of space solar power station[J]. Acta Astronautica, 2021, 180: 196-204.

    [25] AHMAD N, OTA Y, NISHIOKA K. Temperature reduction of solar cells in a concentrator photovoltaic system using a long wavelength cut filter[J]. Japanese Journal of Applied Physics, 2017, 56(3): 032301.

    [26] GAO M Y, XIA Y, LI R, et al. The design of near-perfect spectrum-selective mirror based on photonic structures for passive cooling of silicon solar cells[J]. Nanomaterials (Basel, Switzerland), 2020, 10(12): 2483.

    [27] MWAMBURI M, WCKELG RD E. Doped tin oxide coated aluminium solar selective reflector surfaces[J]. Solar Energy, 2000, 68(4): 371-378.

    [28] MAGHANGA C M, NIKLASSON G A, GRANQVIST C G, et al. Spectrally selective reflector surfaces for heat reduction in concentrator solar cells: modeling and applications of TiO2: nb-based thin films[J]. Applied Optics, 2011, 50(19): 3296.

    [29] GAO R, XIONG H, LI R, et al. Antimony doped tin oxide infrared shielding films for cooling silicon solar cells[C]//Advanced Functional Materials, 2018: 817-829.

    [31] RAMAN A P, ANOMA M A, ZHU L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544.

    [32] ZHAI Y, MA Y G, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066.

    [33] MANDAL J, FU Y K, OVERVIG A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319.

    [34] LI T, ZHAI Y, HE S M, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763.

    [35] YIN X B, YANG R G, TAN G, et al. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518): 786-791.

    [36] LI Y, LI W, HAN T C, et al. Transforming heat transfer with thermal metamaterials and devices[J]. Nature Reviews Materials, 2021, 6(6): 488-507.

    [37] ZHU L X, RAMAN A P, FAN S H. Radiative cooling of solar absorbers using a transparent photonic crystal thermal blackbody[J]. 2016 Conference on Lasers and Electro-Optics (CLEO), 2016: 1-2.

    [38] CHO J W, PARK S J, PARK S J, et al. Scalable on-chip radiative coolers for concentrated solar energy devices[J]. ACS Photonics, 2020, 7(10): 2748-2755.

    [39] KOU J L, JURADO Z, CHEN Z, et al. Daytime radiative cooling using near-black infrared emitters[J]. ACS Photonics, 2017, 4(3): 626-630.

    [40] AN Y D, SHENG C X, LI X F. Radiative cooling of solar cells: opto-electro-thermal physics and modeling[J]. Nanoscale, 2019, 11(36): 17073-17083.

    [41] ZHOU Z G, SUN X S, BERMEL P. Radiative cooling for thermophotovoltaic systems[C]//SPIE Optical Engineering + Applications. Proc SPIE 9973, Infrared Remote Sensing and Instrumentation XXIV, San Diego, California, USA. 2016, 9973: 53-60.

    [42] ZHANG H, LY K C S, LIU X, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14657-14666.

    [43] WU W C, LIN S H, WEI M M, et al. Flexible passive radiative cooling inspired by Saharan silver ants[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110512.

    [44] LU Y H, CHEN Z C, AI L, et al. A universal route to realize radiative cooling and light management in photovoltaic modules[J]. Solar RRL, 2017, 1(10): 1700084.

    [45] LIN S H, AI L, ZHANG J, et al. Silver ants-inspired flexible photonic architectures with improved transparency and heat radiation for photovoltaic devices[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110135.

    [46] ZHU L X, RAMAN A, WANG K X, et al. Radiative cooling of solar cells[J]. Optica, 2014, 1(1): 32.

    [47] LEE E, LUO T F. Black body-like radiative cooling for flexible thin-film solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 194: 222-228.

    [48] WANG Z, KORTGE D, ZHU J, et al. Lightweight, passive radiative cooling to enhance concentrating photovoltaics[J]. Joule, 2020, 4(12): 2702-2717.

    [49] KUMAR A, CHOWDHURY A. Reassessment of different antireflection coatings for crystalline silicon solar cell in view of their passive radiative cooling properties[J]. Solar Energy, 2019, 183: 410-418.

    [50] AHMED S, LI Z P, MA T, et al. A comparative performance evaluation and sensitivity analysis of a photovoltaic-thermal system with radiative cooling[J]. Solar Energy Materials and Solar Cells, 2021, 221: 110861.

    [51] LI Z P, AHMED S, MA T. Investigating the effect of radiative cooling on the operating temperature of photovoltaic modules[J]. Solar RRL, 2021, 5(4): 2000735.

    [52] ZHAO B, HU M K, AO X Z, et al. Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling[J]. Solar Energy Materials and Solar Cells, 2018, 178: 266-272.

    LIU Xiaopeng, WANG Wei, ZHOU Wencai, YU Hao, QI Shuai, WANG Chuanshen, MA Liyun. Research Progress on Spectral-Selective Materials for Passive Cooling of Solar Photovoltaics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 747
    Download Citation