[1] COLLINS R T, LIU Y X, LEORDEANU M. Online selection of discriminative tracking features [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643.
[2] GRABNER H, LEISTNER C, BISCHOF H.Semi-supervised on-line booting for robust tracking[J].Lecture Notes in Computer Science, 2008, 5302: 234-247.
[3] BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
[4] BALAN A O, BLACK M J.An adaptive appearance model approach for model-based articulated object tracking[C].2006 IEEE Computer Society Conterence on Computer Vision and Pattern Recognition, 2006, (1): 758-765.
[5] ROSS D A, LIM J W, LIN R S, et al..Incremental learning for robust visual tracking [J].International Journal of Computer Vision, 2008, 77(1-3): 125-141.
[6] LIN R S, ROSS D, LIM J, et al..Adaptive discriminative generative model and its application [C].NIPS, 2004: 801-808.
[7] FRIEDMAN J, HASTIE T, TIBSHIRANI R.Adaptive logistic regression: a statistical view of boosting [J].The Annals of Statistics, 2000, 28(2): 337-407.
[8] DONOHO D L.Compressed sensing[J].Information Theory, 2006, 52(4): 1289-1306.
[9] LI H X, SHEN CH H, SHI Q F.Real-time visual tracking using compressive sensing[C].2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011: 1305-1312.
[10] ZHANG K H, ZHANG L, YANG M H. Real-time compressive tracking [C].Computer Vision-ECCV 2012, 2012, 7574: 864-877.
[12] ACHLIOPTAS D.Database-friendly random projections: Johnson-Lindenstrauss with binary coins[J].Comput.Syst.Sci 66, 2003: 671-687.