• Journal of Atmospheric and Environmental Optics
  • Vol. 17, Issue 3, 317 (2022)
Xiaonan SONG*, Guangyuan CHI, Yue SHI, and Qiang FAN
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2022.03.004 Cite this Article
    SONG Xiaonan, CHI Guangyuan, SHI Yue, FAN Qiang. Study on influencing factors of spatial heterogeneity of land surface temperature in coastal areas[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 317 Copy Citation Text show less
    References

    [1] Xu X G, Duan X F, Sun H Q, et al. Green space changes and planning in the capital region of China[J]. Environmental Management, 2011, 47(3): 456-467.

    [2] Dewan A M, Yamaguchi Y, Rahman Z. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh[J]. GeoJournal, 2012, 77(3): 315-330.

    [3] Byomkesh T, Nakagoshi N, Dewan A M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh[J]. Landscape and Ecological Engineering, 2012, 8(1): 45-58.

    [4] Barbier E B, Hacker S D, Kennedy C, et al. The value of estuarine and coastal ecosystem services[J]. Ecological Monographs, 2011, 81(2): 169-193.

    [5] Liu Y, Kuang Y Q, Wu Z F, et al. Impact of land use on urban land surface temperature—A case study of Dongguan, Guangdong Province[J]. Scientia Geographica Sinica, 2006, 26(5): 5597-5602.

    [6] Guha S, Govil H, Diwan P. Monitoring LST-NDVI relationship using Premonsoon Landsat datasets[J]. Advances in Meteorology, 2020, 2020: 4539684.

    [7] Mishra B, Sandifer J, Gyawali B R.Urban heat island in Kathmandu, Nepal: Evaluating relationship between NDVI and LST from 2000 to 2018[J]. International Journal of Environment, 2019, 8(1): 17-29.

    [8] Shuai C, Sha J M, Lin J H, et al. Spatial difference of the relationship between remote sensing index and land surface temperature under different underlying surfaces[J]. Journal of Geo-Information Science, 2018, 20(11): 1657-1666.

    [9] Liang Z, Wang Y Y, Sun F Y, et al. Geographical pattern of COVID-19 incidence of China's cities: Role of migration and socioeconomic status[J]. Research of Environmental Sciences, 2020, 33(7): 1571-1578.

    [10] Xue R H, Yu X P, Li D Q, et al. Using geographically weighted regression to explore the effects of environmental heterogeneity on the space use by giant pandas in Qinling Mountains[J]. Acta Ecologica Sinica, 2020, 40(8): 2647-2654.

    [11] Lin C H, Wen T H. Using geographically weighted regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of dengue[J]. International Journal of Environmental Research and Public Health,2011, 8(7): 2798-2815.

    [12] Brunsdon C, Fotheringham A S, Charlton M. Some notes on parametric significance tests for geographically weighted regression[J]. Journal of Regional Science, 1999, 39(3): 497-524.

    [13] Huang B, Wu B, Barry M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401.

    [14] Fotheringham A S, Yang W B, Kang W. Multiscale geographically weighted regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6): 1247-1265.

    [15] Hu P. Study on Urban Heat Island in The Central City of Chengdu Based on Landsat 8[D]. Chengdu: Chengdu University of Technology, 2015.

    [16] Qin Z, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 22(18): 3719-3746.

    [17] Jiménez-Muoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of geophysical research: atmospheres, 2003, 108(D22): 4688.

    [18] Zhang X, Tang Y Y, Wei J. Research on retrieval of remote sensing images on surface temperature-sensitive band[J]. Science of Surveying and Mapping, 2015, 40(5): 37-43.

    [19] Sun D L, Pinker R T. Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES-8)[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D11): 4326.

    [20] Sun D, Pinker R T. Retrieval of surface temperature from the MSG-SEVIRI observations: Part I. Methodology[J]. International Journal of Remote Sensing, 2007, 28(23): 5255-5272.

    [21] Qin Z H, Zhang M H, Arnon K, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 2001(4): 456-466.

    [22] Rozenstein O, Qin Z H, Derimian Y, et al. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm[J]. Sensors, 2014, 14(4): 5768-5780.

    [23] Jiang D L, Kuang H H, Cao X, et al. Study of land surface temperature retrieval based on Landsat 8—with the sample of Dianchi Lake Basin[J]. Remote Sensing Technology and Application, 2015, 30(3): 448-454.

    [24] Yin D D, Wang Y H. Temporal and spatial changes of vegetation coverage and its topographic differentiation in temperate continental semi-arid monsoon climate region[J]. Acta Ecologica Sinica, 2021, 41(3): 1158-1167.

    [25] Ma C, Cai P L. Spatio-temporal changes and driving factors of environmental and ecological index in Culai-Lianhua area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 199-208.

    [26] Shi J, Sun G W, Cui L L. Temporal and spatial variations of NDVI and its response to east Asian summer monsoon in East China[J]. Plateau Meteorology, 2008, 27(S1): 170-174.

    [27] Zha Y, Ni S X, Yang S. An effective approach to automatically extract urban land-use from TM lmagery[J]. National Remote Sensing Bulletin, 2003, 7(1): 37-40+82.

    [28] Xu J H, Zhao Y, Xiao M H, et al. Relationship of air temperature to NDVI & NDBI in Guangzhou City using spatial autoregressive model[J]. Remote Sensing for Land and Resources, 2018, 30(2): 186-194.

    [29] Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3025-3033.

    [30] As-Syakur A R, Adnyana I W S, Arthana I W, et al. Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area[J]. Remote Sensing, 2012, 4(10): 2957-2970.

    [31] Duan J X, Zhai W X, Cheng C Q, et al. Socio-economic factors influencing the spatial distribution of PM2.5 concentrations in China: An exploratory analysis[J]. Environmental Sciences, 2018, 39(5): 2498-2504.

    [32] Fotheringham A S, Brunsdon C, Charlton M. Geographically weighted regression: The analysis of spatially varying relationships[M]. John Wiley & Sons, 2003.

    [33] Shen T Y, Yu H C, Zhou L, et al. On hedonic price of second-hand houses in Beijing based on multi-scalegeographically weighted regression: Scale law of spatial heterogeneity[J]. Economic Geography, 2020, 40(3): 75-83.

    [34] Wang S J, Gao S, Chen J. Spatial heterogeneity of driving factors of urban haze pollution in China based on GWR model[J]. Geographical Research, 2020, 39(3): 651-668.

    [35] Guo Y, Wang H W, Zhang Z, et al. Spatio-temporal scale effect and driving mechanism of thermal environment and land surface cover in Nanjing[J]. Ecology and Environmental Sciences, 2020, (7): 1403-1411.

    [36] Liu D, Yu C L. Urban expansion and its influence on spatio-temporal variation of thermal environment: A case study of Harbin City[J]. Ecology and Environmental Sciences, 2018, 27(3): 509-517.

    [37] Cui L L, Li G S, Ji D J. Heat island effect and its relationship with land use in Chengdu City[J]. Chinese Journal of Ecology, 2018, (5): 1518-1526.

    [38] Cao L, Hu H W, Meng X L, et al. Relationships between land surface temperature and key landscape elements in urban area[J]. Chinese Journal of Ecology, 2011, 30(10): 2329-2334.

    SONG Xiaonan, CHI Guangyuan, SHI Yue, FAN Qiang. Study on influencing factors of spatial heterogeneity of land surface temperature in coastal areas[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 317
    Download Citation