• Photonics Research
  • Vol. 3, Issue 2, A64 (2015)
Y. Wu1、*, B. C.1, Q. Y.1, X. L.1, X. Y.1, Y. J.1, Y. Gong1, W. L.1, Z. G.2、3, Y. F.2, and K. S.1、4
Author Affiliations
  • 1Key Laboratory of Optical Fiber Sensing and Communications, Education Ministry of China, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 3Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C DK-8000, Denmark
  • 4Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
  • show less
    DOI: 10.1364/prj.3.000a64 Cite this Article Set citation alerts
    Y. Wu, B. C., Q. Y., X. L., X. Y., Y. J., Y. Gong, W. L., Z. G., Y. F., K. S.. Generation of cascaded four-wave-mixing with graphene-coated microfiber[J]. Photonics Research, 2015, 3(2): A64 Copy Citation Text show less
    References

    [1] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonicsandoptoelectronics,” Nat.Photonics4,611–622(2010).

    [2] F. Abajo, “Graphene nanophotonics,” Science 339, 917–918 (2013).

    [3] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).

    [4] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).

    [5] B. Yao, Y. Wu, Z. Wang, Y. Cheng, Y. Rao, Y. Gong, Y. Chen, and Y. Li, “Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach–Zehnder interferometer,” Opt. Express 21, 29818–29826 (2013).

    [6] M. Liu, X. Yin, E. Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).

    [7] W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).

    [8] F. N. Xia, T. Mueller, Y. M. Lin, A. Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).

    [9] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6, 105–110 (2012).

    [10] X. Gan, R. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).

    [11] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. Basko, and A. C. Ferrari, “Graphene modelocked ultrafast laser,” ACS Nano 4, 803–810 (2010).

    [12] X. He, Z. Liu, and D. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37, 2394–2396 (2012).

    [13] B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B 194, 142–148 (2014).

    [14] J. Kim, K. Chung, and C. Choi, “Thermo-optic mode extinction modulator based on graphene plasmonic waveguide,” Opt. Express 21, 15280–15286 (2013).

    [15] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).

    [16] A. Cerqueira, J. Boggio, A. Rieznik, H. Figueroa, H. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16, 2816–2828 (2008).

    [17] Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).

    [18] X. Gai, D. Choi, S. Madden, and B. Davies, “Polarization-independent chalcogenide glass nanowires with anomalous dispersion for alloptical processing,” Opt. Express 20, 13513–13521 (2012).

    [19] J. Kakande, R. Slavik, F. Parmigiani, A. Bogris, D. Syvridis, L. Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).

    [20] H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett. 11, 2622–2627 (2011).

    [21] R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).

    [22] N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H. Chiu, A. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B 87, 121406 (2013).

    [23] S. Hong, J. Dadap, N. Petrone, P. Yeh, J. Hone, and R. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).

    [24] E. Hendry, P. Hale, J. Moger, and A. Savchenko, “Coherent nonlinear optical response of graphene,” Phy. Rev. Lett. 105, 097401 (2010).

    [25] Z. Zhang and P. L. Voss, “Full-band quantum-dynamical theory of saturation and four-wave mixing in graphene,” Opt. Lett. 36, 4569–4571 (2011).

    [26] B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE J. Photon. Technol. Lett. 24, 1792–1794 (2012).

    [27] Z. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” IEEE J. Lightwave Technol. 29, 2732–2739 (2011).

    [28] T. Gu, N. Petrone, J. F. McMillan, A. Zande, M. Yu, G. Lo, D. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

    [29] H. Zhou, T. Gu, J. McMillan, N. Petrone, A. Zande, J. Hone, M. Yu, G. Lo, D. Kwong, G. Feng, S. Zhou, and C. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).

    [30] Y. Wu, B. Yao, Y. Cheng, Y. Rao, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE J. Photon. Technol. Lett. 20, 249–252 (2014).

    [31] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2009).

    [32] Z. Wang, Y. Chen, P. Li, X. Hao, J. Liu, R. Huang, and Y. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano 5, 7149–7154 (2011).

    [33] G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5, 554–560 (2011).

    [34] E. Ferreira, M. Moutinho, F. Stavale, M. Lucchese, R. Capaz, C. Achete, and A. Jorio, “Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder,” Phys. Rev. B 82, 125429 (2010).

    [35] P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).

    [36] L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).

    [37] A. Gorbach, A. Marini, and D. V. Skryabin, “Graphene-clad tapered fiber: Effective nonlinearity and propagation losses,” Opt. Lett. 38, 5244–5247 (2013).

    [38] Y. H. Li, Y. Y. Zhao, and L. J. Wang, “Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers,” Opt. Lett. 37, 3441–3443 (2012).

    [39] H. Zhang, D. Tang, L. Zhao, Q. Bao, K. P. Loh, B. Lin, and S. Tjin, “Compact graphene mode-locked wavelength-tunable erbiumdoped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).

    CLP Journals

    [1] Liping Wang, Jiangkun Cao, Yao Lu, Xiaoman Li, Shanhui Xu, Qinyuan Zhang, Zhongmin Yang, Mingying Peng. In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser[J]. Photonics Research, 2019, 7(3): 300

    [2] Yang Yu, Qiang Bian, Nan Zhang, Yang Lu, Xueliang Zhang, Junbo Yang. Investigation on an all-optical intensity modulator based on an optical microfiber coupler[J]. Chinese Optics Letters, 2018, 16(4): 040605

    [3] Meng Liu, Rui Tang, Ai-Ping Luo, Wen-Cheng Xu, Zhi-Chao Luo. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers[J]. Photonics Research, 2018, 6(10): C1

    [4] Chuanyi Zhu, Yuping Chen, Guangzhen Li, Licheng Ge, Bing Zhu, Mengning Hu, Xianfeng Chen. Multiple-mode phase matching in a single-crystal lithium niobate waveguide for three-wave mixing[J]. Chinese Optics Letters, 2017, 15(9): 091901

    Y. Wu, B. C., Q. Y., X. L., X. Y., Y. J., Y. Gong, W. L., Z. G., Y. F., K. S.. Generation of cascaded four-wave-mixing with graphene-coated microfiber[J]. Photonics Research, 2015, 3(2): A64
    Download Citation