• Advanced Photonics Nexus
  • Vol. 2, Issue 6, 066002 (2023)
Yafei Wang1,†, Yinggang Chen1,2, Shikai Wang1,*, Meng Wang1..., Lei Zhang1, Suya Feng1, Fei Yu1,3, Guoping Dong4, Lei Wen1, Danping Chen1, Chunlei Yu1,3,* and Lili Hu1,3,*|Show fewer author(s)
Author Affiliations
  • 1Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Key Laboratory of Materials for High Power Laser, Shanghai, China
  • 2University of Chinese Academy of Sciences, Beijing, China
  • 3University of Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, Hangzhou, China
  • 4South China University of Technology, School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangzhou, China
  • show less
    DOI: 10.1117/1.APN.2.6.066002 Cite this Article Set citation alerts
    Yafei Wang, Yinggang Chen, Shikai Wang, Meng Wang, Lei Zhang, Suya Feng, Fei Yu, Guoping Dong, Lei Wen, Danping Chen, Chunlei Yu, Lili Hu, "Coordination engineering in Nd3+-doped silica glass for improving repetition rate of 920-nm ultrashort-pulse fiber laser," Adv. Photon. Nexus 2, 066002 (2023) Copy Citation Text show less
    References

    [1] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84-92(2012).

    [2] G. Chang, Z. Wei. Ultrafast fiber lasers: an expanding versatile toolbox. iScience, 23, 101101(2020).

    [3] J. E. Bae et al. Multi-gigahertz mode-locked femtosecond Yb:KLuW waveguide lasers. Photonics Res., 10, 2584(2022).

    [4] S. Chen et al. W-type normal dispersion thulium-doped fiber-based high-energy all-fiber femtosecond laser at 1.7  μm. Opt. Lett., 46, 3637-3640(2021). https://doi.org/10.1364/OL.431023

    [5] K. Murari et al. Sub-50 fs pulses at 2050 nm from a picosecond Ho:YLF laser using a two-stage Kagome-fiber-based compressor. Photonics Res., 10, 637(2022).

    [6] M. An et al. Co-MOFs as emerging pulse modulators for femtosecond ultrafast fiber laser. ACS Appl. Mater. Interfaces, 14, 53971-53980(2022).

    [7] T. Li et al. Direct generation of 3.17 mJ green pulses in a cavity-dumped Ho3+-doped fiber laser at 543 nm. Photonics Res., 11, 413(2023). https://doi.org/10.1364/PRJ.474977

    [8] G. Gao et al. Consecutive 1015–1105-nm wavelength tunable ‘figure-of-9’ mode-locked Yb:fiber oscillator. Opt. Lett., 47, 5869(2022).

    [9] B. Chen et al. 910 nm femtosecond Nd-doped fiber laser for in vivo two-photon microscopic imaging. Opt. Express, 24, 16544-16549(2016).

    [10] R. Dai et al. High energy (>40 nJ), sub-100 fs, 950 nm laser for two-photon microscopy. Opt. Express, 29, 38979-38988(2021).

    [11] K. Charan et al. Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy. Biomed. Opt. Express, 9, 2304-2311(2018).

    [12] P. Wang et al. 926 nm Yb-doped fiber femtosecond laser system for two-photon microscopy. Appl. Phys. Express, 12, 032008(2019).

    [13] H. He et al. Deep-tissue two-photon microscopy with a frequency-doubled all-fiber mode-locked laser at 937 nm. Adv. Photonics Nexus, 2, 026001(2022).

    [14] W. Zong et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat. Methods, 18, 46-49(2021).

    [15] W. Zong et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods, 14, 713(2017).

    [16] J. Yao et al. Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics. Opt. Lett., 47, 989-992(2022).

    [17] M. Drobizhev et al. Two-photon absorption properties of fluorescent proteins. Nat. Methods, 8, 393-399(2011).

    [18] A. Forli et al. Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo. Cell Rep., 22, 3087-3098(2018).

    [19] C. H. Hage et al. Two-photon microscopy with a frequency-doubled fully fusion-spliced fiber laser at 1840 nm. Opt. Lett., 43, 5098-5101(2018).

    [20] K. Le Corre et al. Mode-locked all-PM Nd-doped fiber laser near 910 nm. Opt. Lett., 46, 3564-3567(2021).

    [21] A. A. Mkrtchyan et al. Nd-doped polarization maintaining all-fiber laser with dissipative soliton resonance mode-locking at 905 nm. J. Lightwave Technol., 39, 5582-5588(2021).

    [22] R. Becheker et al. Dissipative soliton resonance in a mode-locked Nd-fiber laser operating at 927 nm. Opt. Lett., 44, 5497-5500(2019).

    [23] S. Wang et al. Femtosecond all-polarization-maintaining Nd fiber laser at 920 nm mode locked by a biased NALM. Opt. Express, 29, 38199-38205(2021).

    [24] X. Gao et al. Core-pumped femtosecond Nd:fiber laser at 910 and 935 nm. Opt. Lett., 39, 4404-4407(2014).

    [25] K. Qian et al. Mode-locked Nd-doped fiber laser at 930 nm. Opt. Lett., 39, 267-270(2014).

    [26] Y. Wang et al. Ultrafast fiber laser at 0.9  μm with a gigahertz fundamental repetition rate by a high gain Nd3+-doped phosphate glass fiber. Opt. Express, 30, 30870(2022). https://doi.org/10.1364/OE.468607

    [27] J. Zhang et al. Watt-level gigahertz femtosecond fiber laser system at 920 nm. Opt. Lett., 47, 4941(2022).

    [28] Y. Wang et al. Efficient three-level continuous-wave and GHz passively mode-locked laser by a Nd3+-doped silicate glass single mode fiber. Opt. Express, 31, 13307-13316(2023). https://doi.org/10.1364/OE.479435

    [29] W. C. Wang et al. Recent advances in soft optical glass fiber and fiber lasers. Prog. Mater. Sci., 101, 90-171(2019).

    [30] P. H. Pax et al. Scalable waveguide design for three-level operation in Neodymium doped fiber laser. Opt. Express, 24, 28633-28647(2016).

    [31] A. Wang, A. K. George, J. C. Knight. Three-level neodymium fiber laser incorporating photonic bandgap fiber. Opt. Lett., 31, 1388-1390(2006).

    [32] I. A. Bufetov et al. Efficient 0.9-μm neodymium-doped single-mode fibre laser. Quantum Electron., 33, 1035-1037(2003). https://doi.org/10.1070/QE2003v033n12ABEH002549

    [33] S. Fu et al. Single-frequency Nd3+-doped phosphate fiber laser at 915 nm. J. Lightwave Technol., 39, 1808-1813(2020). https://doi.org/10.1109/JLT.2020.3043166

    [34] K. Arai et al. Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass. J. Appl. Phys., 59, 3430-3436(1986).

    [35] S. Zhou et al. Topological engineering of glass for modulating chemical state of dopants. Adv. Mater., 26, 7966(2014).

    [36] Y. Chen et al. High-power lasing at 900  nm in Nd3+-doped fiber: a direct coordination engineering approach to enhance fluorescence. Optica, 10, 905(2023). https://doi.org/10.1364/OPTICA.494868

    [37] W. T. Carnall, P. R. Fields, K. Rajnak. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys., 49, 4424-4442(2003). https://doi.org/10.1063/1.1669893

    [38] S. Tanabe et al. Correlation between 151Eu isomer shift and Judd-Ofelt parameters of Nd3+ ions in phosphate and silicate laser glasses. Phys. Rev. B, 48, 10591-10594(1993). https://doi.org/10.1103/PhysRevB.48.10591

    [39] A. Hayashi et al. Structural investigation of 95(0.6Li2S0.4SiS2)5Li4SiO42 oxysulfide Glass by using X-ray photoelectron spectroscopy. J. Am. Ceram. Soc., 81, 1305-1309(2005). https://doi.org/10.1111/j.1151-2916.1998.tb02482.x

    [40] F. Wang et al. Manipulating refractive index, homogeneity and spectroscopy of Yb3+-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers. Opt. Express, 25, 25960-25969(2017). https://doi.org/10.1364/OE.25.025960

    [41] Y. Chen et al. Nd3+-doped silica glass and fiber prepared by modified sol-gel method. Chin. Opt. Lett., 20, 091601(2022).

    [42] W. Li et al. 0.017 nm, 143 ps passively mode-locked fiber laser based on nonlinear polarization rotation. Opt. Lett., 48, 2676-2679(2023).

    Yafei Wang, Yinggang Chen, Shikai Wang, Meng Wang, Lei Zhang, Suya Feng, Fei Yu, Guoping Dong, Lei Wen, Danping Chen, Chunlei Yu, Lili Hu, "Coordination engineering in Nd3+-doped silica glass for improving repetition rate of 920-nm ultrashort-pulse fiber laser," Adv. Photon. Nexus 2, 066002 (2023)
    Download Citation