• Acta Physica Sinica
  • Vol. 68, Issue 3, 035201-1 (2019)
Ying Liu, Zhi-Hua Chen*, and Chun Zheng
DOI: 10.7498/aps.68.20181747 Cite this Article
Ying Liu, Zhi-Hua Chen, Chun Zheng. Kelvin-Helmholtz instability in anisotropic viscous magnetized fluid[J]. Acta Physica Sinica, 2019, 68(3): 035201-1 Copy Citation Text show less
Sketch of the computational model.计算模型
Fig. 1. Sketch of the computational model.计算模型
Tracer concentration field at different times: (a) Isotropic viscous case (Re = 105); (b) anisotropic viscous case (Re0 = 105, Re|| = 100).不同时刻自由剪切层示踪剂浓度场 (a)各向同性黏性(Re = 105); (b) 各向异性黏性(Re0 = 105, Re|| = 100)
Fig. 2. Tracer concentration field at different times: (a) Isotropic viscous case (Re = 105); (b) anisotropic viscous case (Re0 = 105, Re|| = 100). 不同时刻自由剪切层示踪剂浓度场 (a)各向同性黏性(Re = 105); (b) 各向异性黏性(Re0 = 105, Re|| = 100)
Rortex field with streamlines at different times in isotropic viscous fluid (Re = 105): (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10.不同时刻, 各向同性黏性(Re = 105)算例涡结构云图及流线 (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10
Fig. 3. Rortex field with streamlines at different times in isotropic viscous fluid (Re = 105): (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10. 不同时刻, 各向同性黏性(Re = 105)算例涡结构云图及流线 (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10
Rortex field with streamlines at different times in anisotropic viscous fluid (Re0 =105, Re|| = 100): (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10.不同时刻各向异性黏性(Re0 = 105, Re|| = 100)算例涡结构云图及流线 (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10
Fig. 4. Rortex field with streamlines at different times in anisotropic viscous fluid (Re0 =105, Re|| = 100): (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10. 不同时刻各向异性黏性(Re0 = 105, Re|| = 100)算例涡结构云图及流线 (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10
Magnetic field with field lines at different times: (a) Isotropic viscous case (Re = 105); (b) anisotropic viscous case (Re0 = 105, Re|| = 100)不同时刻剪切层中磁场云图和磁感线 (a)各向同性黏性(Re = 105); (b) 各向异性黏性(Re0 = 105, Re|| = 100)
Fig. 5. Magnetic field with field lines at different times: (a) Isotropic viscous case (Re = 105); (b) anisotropic viscous case (Re0 = 105, Re|| = 100) 不同时刻剪切层中磁场云图和磁感线 (a)各向同性黏性(Re = 105); (b) 各向异性黏性(Re0 = 105, Re|| = 100)
Evolution of the longitudinal total kinetic energy Eky .纵向总动能随时间的变化
Fig. 6. Evolution of the longitudinal total kinetic energy Eky . 纵向总动能随时间的变化
Evolution of the amplification factor of average magnetic energy.平均磁能密度放大倍数随时间的变化
Fig. 7. Evolution of the amplification factor of average magnetic energy.平均磁能密度放大倍数随时间的变化
Evolution of the average transverse magnetic pressure and anti-bending magnetic tension: (a) Transverse magnetic pressure; (b) anti-bending magnetic tension.平均横向磁压力和抗弯磁张力随时间的变化 (a) 横向磁压力; (b) 抗弯磁张力
Fig. 8. Evolution of the average transverse magnetic pressure and anti-bending magnetic tension: (a) Transverse magnetic pressure; (b) anti-bending magnetic tension.平均横向磁压力和抗弯磁张力随时间的变化 (a) 横向磁压力; (b) 抗弯磁张力
Evolution of the total enstrophy.流场总涡度拟能随时间的变化
Fig. 9. Evolution of the total enstrophy.流场总涡度拟能随时间的变化
Ying Liu, Zhi-Hua Chen, Chun Zheng. Kelvin-Helmholtz instability in anisotropic viscous magnetized fluid[J]. Acta Physica Sinica, 2019, 68(3): 035201-1
Download Citation