• High Power Laser and Particle Beams
  • Vol. 34, Issue 4, 041003 (2022)
Ye Zheng, Ziyang Ma, Jiajing Zhu, Miao Yu, Siyuan Li, Lin Zhang, Junlong Wang*, and Xuefeng Wang*
Author Affiliations
  • Beijing Institute of Aerospace Control Devices, Beijing 100094, China
  • show less
    DOI: 10.11884/HPLPB202234.210414 Cite this Article
    Ye Zheng, Ziyang Ma, Jiajing Zhu, Miao Yu, Siyuan Li, Lin Zhang, Junlong Wang, Xuefeng Wang. Influence of space radiation on properties of high power Yb-doped fiber lasers and their recent progress[J]. High Power Laser and Particle Beams, 2022, 34(4): 041003 Copy Citation Text show less
    References

    [1] Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 33, 1049-1056(1997).

    [2] Tünnermann A, Schreiber T, Röser F, et al. The renaissance and bright future of fibre lasers[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 38, S681-S693(2005).

    [3] Limpert J, Roser F, Klingebiel S, et al. The rising power of fiber lasers and amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 537-545(2007).

    [12] Li Mi. Space radiation effect on the erbiumdoped fiber amplifiers f intersatellite optical communications[D]. Harbin: Harbin Institute of Technology, 2009

    [13] Chen Yisha, Xu Haozhen, Xing Yinbin, et al. Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier[J]. Optics Express, 26, 20430-20441(2018).

    [16] Shao Chongyun, Ren Jinjun, Wang Fan, et al. Origin of radiation-induced darkening in Yb3+/Al3+/P5+-doped silica glasses: effect of the P/Al ratio[J]. The Journal of Physical Chemistry B, 122, 2809-2820(2018).

    [17] Shao Chongyun. Study on structure, spectrum, radiation resistance radiationinduced darkening mechanism of Yb3+doped silica glasses[D]. Shanghai: University of Chinese Academy of Sciences, 2019

    [18] Tayl E W, Hulick K E, Battiato J M, et al. Response of germaniumdoped fiber Bragg gratings in radiation environments[C]Proceedings of SPIE 3714, Enabling Photonic Technologies f Aerospace Applications. 1999.

    [19] Fernez A F, Gusarov A I, Berghmans F, et al. Longterm irradiation of fiber Bragg gratings in a lowdoserate gammaneutron radiation field[C]Proceedings of SPIE 4823, Photonics f Space Environments VIII. 2002: 205212.

    [22] Thompson R J, Tu M, Aveline D C, et al. High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals[J]. Optics Express, 11, 1709-1713(2003).

    [23] Schreiber T, Wirth C, Schmidt O, et al. Incoherent beam combining of continuous-wave and pulsed Yb-doped fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 354-360(2009).

    [24] Liu Yingfan, Lü Zhiwei, Dong Yongkang, et al. Research on stimulated Brillouin scattering suppression based on multi-frequency phase modulation[J]. Chinese Optics Letters, 7, 29-31(2009).

    [25] Supradeepa V R. Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise[J]. Optics Express, 21, 4677-4687(2013).

    [26] Zhao Dan. Research on total ionizing dose effect on the perfmance of LiNbO3 intensity modulat[D]. Harbin: Harbin Institute of Technology, 2019

    [28] Zhao Nan. The study on photodarkening effect in ytterbium doped high power fiber lasers[D]. Wuhan: Huazhong University of Science & Technology, 2018

    [29] Cao Ruiting, Wang Yibo, Chen Gui, et al. Investigation of photo-darkening-induced thermal load in Yb-doped fiber lasers[J]. IEEE Photonics Technology Letters, 31, 809-812(2019).

    [30] Otto H J, Modsching N, Jauregui C, et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 23, 15265-15277(2015).

    [32] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).

    [33] Hu Man, Yang Yifeng, Zheng Ye, et al. Raman suppression in a kilowatt narrow-band fiber amplifier[J]. Chinese Physics Letters, 33, 044208(2016).

    [34] Hu Man, Ke Weiwei, Yang Yifeng, et al. Low threshold Raman effect in high power narrowband fiber amplifier[J]. Chinese Optics Letters, 14, 011901(2016).

    [35] Zhang Song, Zhang Wanru, Jiang Man, et al. Suppressing stimulated Raman scattering by adopting a composite cavity in a narrow linewidth fiber oscillator[J]. Applied Optics, 60, 5984-5989(2021).

    [36] Kovalev V I, Harrison R G. Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers[J]. Optics Letters, 31, 161-163(2006).

    [37] Liu Anping. Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient[J]. Optics Express, 15, 977-984(2007).

    [38] Hansryd J, Dross F, Westlund M, et al. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution[J]. Journal of Lightwave Technology, 19, 1691-1697(2001).

    [39] Girard S, Laurent A, Pinsard E, et al. Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions[J]. Optics Letters, 39, 2541-2544(2014).

    [40] Ladaci A, Girard S, Mescia L, et al. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions[J]. Journal of Applied Physics, 121, 163104(2017).

    [41] Girard S, Morana A, Ladaci A, et al. Recent advances in radiation-hardened fiber-based technologies for space applications[J]. Journal of Optics, 20, 093001(2018).

    [42] DiGiovanni D J, MacChesney J B, Kometani T Y. Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join[J]. Journal of Non-Crystalline Solids, 113, 58-64(1989).

    [43] Deschamps T, Vezin H, Gonnet C, et al. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber[J]. Optics Express, 21, 8382-8392(2013).

    [44] León M, Lancry M, Ollier N, et al. Ge- and Al-related point defects generated by gamma irradiation in nanostructured erbium-doped optical fiber preforms[J]. Journal of Materials Science, 51, 10245-10261(2016).

    [45] Likhachev M E, Bubnov M M, Zotov K V, et al. Radiation resistance of Er-doped silica fibers: effect of host glass composition[J]. Journal of Lightwave Technology, 31, 749-755(2013).

    [46] Kobayashi Y, Sekiya E H, Saito K, et al. Effects of Ge co-doping on P-related radiation-induced absorption in Er/Yb-doped optical fibers for space applications[J]. Journal of Lightwave Technology, 36, 2723-2729(2018).

    [47] Wang Qian, Tian Cuiping, Wang Yingying, et al. Review of radiation hardening techniques f EDFAs in space environment[C]Proceedings of SPIE, 9521 ed Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part I. 2015: 95211D.

    [48] Mady F, Guttilla A, Benabdesselam M, et al. Systematic investigation of composition effects on the radiation-induced attenuation mechanisms of aluminosilicate, Yb-doped silicate, Yb- and Yb, Ce-doped aluminosilicate fiber preforms[Invited][J]. Optical Materials Express, 9, 2466-2489(2019).

    [49] Jetschke S, Unger S, SchwuchowA, et al. Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects[J]. Optics Express, 24, 13009-13022(2016).

    [50] Engholm M, Jelger P, Laurell F, et al. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping[J]. Optics Letters, 34, 1285-1287(2009).

    [51] She Shengfei, Liu Bo, Chang Chang, et al. Yb/Ce codoped aluminosilicate fiber with high laser stability for multi-kW level laser[J]. Journal of Lightwave Technology, 38, 6924-6931(2020).

    [52] Zhao Nan, Liu Yehui, Li Miao, et al. Mitigation of photodarkening effect in Yb-doped fiber through Na+ ions doping[J]. Optics Express, 25, 18191-18196(2017).

    [53] Griscom D L. Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation[J]. Journal of Applied Physics, 77, 5008-5013(1995).

    [55] Stone J. Interactions of hydrogen and deuterium with silica optical fibers: a review[J]. Journal of Lightwave Technology, 5, 712-733(1987).

    [56] Girard S, Vivona M, Laurent A, et al. Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application[J]. Optics Express, 20, 8457-8465(2012).

    [57] Girard S, De Michele V, Alessi A, et al. Transient and steady-state radiation response of phosphosilicate optical fibers: influence of H2 loading[J]. IEEE Transactions on Nuclear Science, 67, 289-295(2020).

    [58] Sporea D, Sporea A, Oproiu C. Effects of hydrogen loading on optical attenuation of gamma-irradiated UV fibers[J]. Journal of Nuclear Materials, 423, 142-148(2012).

    [59] Xing Yingbin, Liu Yinzi, Zhao Nan, et al. Radical passive bleaching of Tm-doped silica fiber with deuterium[J]. Optics Letters, 43, 1075-1078(2018).

    [60] Liu Yinzi, Xing Yingbin, Lin Xianfeng, et al. Bleaching of photodarkening in Tm-doped silica fiber with deuterium loading[J]. Optics Letters, 45, 2534-2537(2020).

    [61] Yoo S, Basu C, Boyland A J, et al. Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation[J]. Optics Letters, 32, 1626-1628(2007).

    [62] Di Francesca D, Agnello S, Girard S, et al. Influence of O2-loading pretreatment on the radiation response of pure and fluorine-doped silica-based optical fibers[J]. IEEE Transactions on Nuclear Science, 61, 3302-3308(2014).

    [63] Di Francesca D, Agnello S, Girard S, et al. O2-loading treatment of Ge-doped silica fibers: a radiation hardening process[J]. Journal of Lightwave Technology, 34, 2311-2316(2016).

    [64] Sderlund M J, PonsodaJ J M I, Koplow J P, et al. Thermal bleaching of photodarkening in ytterbiumdoped fibers[C]Proceedings of SPIE 7580, Fiber Lasers VII: Technology, Systems, Applications. 2010: 75800B.

    [65] Friebele E J, Gingerich M E. Photobleaching effects in optical fiber waveguides[J]. Applied Optics, 20, 3448-3452(1981).

    [66] Piccoli R, Robin T, Méchin D, et al. Effective mitigation of photodarkening in Ybdoped lasers based on Alsilicate using UVvisible light[C]Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, Applications. 2014: 896121.

    [67] Chávez A D G, Kir’yanov A V, Barmenkov Y O, et al. Reversible photo-darkening and resonant photo-bleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation[J]. Laser Physics Letters, 4, 734-739(2007).

    [68] Gebavi H, Taccheo S, Tregoat D, et al. Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633nm irradiation[J]. Optical Materials Express, 2, 1286-1291(2012).

    [69] Piccoli R, Robin T, Brand T, et al. Effective photodarkening suppression in Yb-doped fiber lasers by visible light injection[J]. Optics Express, 22, 7638-7643(2014).

    [70] Peretti R, Jurdyc A M, Jacquier B, et al. How do traces of thulium explain photodarkening in Yb doped fibers?[J]. Optics Express, 18, 20455-20460(2010).

    [71] Mescia L, Girard S, Bia P, et al. Optimization of the design of high power Er3+/Yb3+-codoped fiber amplifiers for space missions by means of particle swarm approach[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 3100108(2014).

    [74] Girard S, Ouerdane Y, Origlio G, et al. Radiation effects on silica-based preforms and optical fibers—I: experimental study with canonical samples[J]. IEEE Transactions on Nuclear Science, 55, 3473-3482(2008).

    [75] Girard S, Richard N, Ouerdane Y, et al. Radiation effects on silica-based preforms and optical fibers-II: coupling ab initio simulations and experiments[J]. IEEE Transactionson Nuclear Science, 55, 3508-3514(2008).

    [76] Girard S, MesciaL, Vivona M, et al. Design of radiation-hardened rare-earth doped amplifiers through a coupled experiment/simulation approach[J]. Journal of Lightwave Technology, 31, 1247-1254(2013).

    [77] Fox B P, Schneider Z V, SimmonsPotter K, et al. Gamma radiation effects in Ybdoped optical fiber[C]Proceedings of SPIE 6453, Fiber Lasers IV: Technology, Systems, Applications. 2007: 645328.

    [78] Fox B P, Simmons-Potter K, Thomes Jr W J, et al. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents[J]. IEEE Transactions on Nuclear Science, 57, 1618-1625(2010).

    [79] Fox B P, Simmons-Potter K, KlinerD A V, et al. Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers[J]. Journal of Non-Crystalline Solids, 378, 79-88(2013).

    [80] Singleton B, Petrosky J, Pochet M, et al. Gammaradiationinduced degradation of actively pumped singlemode ytterbiumdoped optical fibers[C]. Proceedings of SPIE 8982, Optical Components Materials XI. 2014: 89820S.

    [81] Duchez J B, Mady F, Mebrouk Y, et al. Interplay between photo- and radiation-induced darkening in ytterbium-doped fibers[J]. Optics Letters, 39, 5969-5972(2014).

    [82] Ladaci A, Girard S, Mescia L, et al. Radiation hardened high-power Er3+/Yb3+-codoped fiber amplifiers for free-space optical communications[J]. Optics Letters, 43, 3049-3052(2018).

    [83] Campanella C, MesciaL, BiaP, et al. Theoretical investigation of thermal effects in high power Er3+/Yb3+-codoped double-clad fiber amplifiers for space applications[J]. Physics Status Solidi (A), 216, 1800582(2019).

    [85] Xie Fenghou, Shao Chongyun, Wang Meng, et al. Research on photo-radiation darkening performance of ytterbium-doped silica fibers for space applications[J]. Journal of Lightwave Technology, 37, 1091-1097(2019).

    [88] Zhao Nan, Xing Yingbin, Li Jiaming, et al. 793 nm pump induced photo-bleaching of photo-darkened Yb3+-doped fibers[J]. Optics Express, 23, 25272-25278(2015).

    [89] Xing Yingbin, Zhao Nan, Liao Lei, et al. Active radiation hardening of Tm-doped silica fiber based on pump bleaching[J]. Optics Express, 23, 24236-24245(2015).

    [90] Xing Yingbin, Huang Hongqi, Zhao Nan, et al. Pump bleaching of Tm-doped fiber with 793 nm pump source[J]. Optics Letters, 40, 681-684(2015).

    [91] Cao Ruiting, Lin Xianfeng, Chen Yisha, et al. 532 nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers[J]. Optics Express, 27, 26523-26531(2019).

    [94] Tao Mengmeng, Chen Hongwei, Feng Guobin, et al. Thermal modeling of high-power Yb-doped fiber lasers with irradiated active fibers[J]. Optics Express, 28, 10104-10123(2020).

    [95] Wang Yuying, Gao Cong, Peng Kun, et al. Laser perfmances of Ybdoped aluminophosphosilicate fiber under γradiation[C]Proceedings of the Conference on Lasers ElectroOpticsPacific Rim 2018. 2018.

    Ye Zheng, Ziyang Ma, Jiajing Zhu, Miao Yu, Siyuan Li, Lin Zhang, Junlong Wang, Xuefeng Wang. Influence of space radiation on properties of high power Yb-doped fiber lasers and their recent progress[J]. High Power Laser and Particle Beams, 2022, 34(4): 041003
    Download Citation