• Chinese Journal of Lasers
  • Vol. 51, Issue 3, 0307201 (2024)
Siyu Li1, Fangzheng Tian1, Duyang Gao2, Dehong Hu2, Hairong Zheng2, Zonghai Sheng2、**, and Shenghong Ju1、*
Author Affiliations
  • 1Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Southeast University, Nanjing 210009, Jiangsu , China
  • 2Key Laboratory of Medical Imaging Science and Technology Systems, Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong , China
  • show less
    DOI: 10.3788/CJL231341 Cite this Article Set citation alerts
    Siyu Li, Fangzheng Tian, Duyang Gao, Dehong Hu, Hairong Zheng, Zonghai Sheng, Shenghong Ju. NIR‑ Fluorescent Gold Nanoclusters for Biomedical Photonics: Advances and Challenges[J]. Chinese Journal of Lasers, 2024, 51(3): 0307201 Copy Citation Text show less
    References

    [1] Liu J H, Yang Y Q, Ma R et al. Research progress of organic NIR-Ⅱ fluorescent probes[J]. Chinese Journal of Lasers, 50, 2107101(2023).

    [2] Feng Z, Qian J. Advances on in vivo fluorescence bioimaging in the second near-infrared window[J]. Laser & Optoelectronics Progress, 59, 0617001(2022).

    [3] Wei Z W, Yang S, Wu M et al. Recent progress in near-infrared-Ⅱ fluorescence imaging probes for fluorescence surgical navigation[J]. Chinese Journal of Lasers, 49, 0507102(2022).

    [4] Welsher K, Liu Z, Sherlock S P et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology, 4, 773-780(2009).

    [5] Bruns O T, Bischof T S, Harris D K et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots[J]. Nature Biomedical Engineering, 1, 56(2017).

    [6] Ma Z R, Wang F F, Zhong Y T et al. Cross-link-functionalized nanoparticles for rapid excretion in nanotheranostic applications[J]. Angewandte Chemie (International Ed. in English), 59, 20552-20560(2020).

    [7] Zhong Y T, Ma Z R, Wang F F et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared‑Ⅱb rare-earth nanoparticles[J]. Nature Biotechnology, 37, 1322-1331(2019).

    [8] Fan Y, Wang P Y, Lu Y Q et al. Lifetime-engineered NIR‑Ⅱ nanoparticles unlock multiplexed in vivo imaging[J]. Nature Nanotechnology, 13, 941-946(2018).

    [9] Liu S J, Ou H L, Li Y Y et al. Planar and twisted molecular structure leads to the high brightness of semiconducting polymer nanoparticles for NIR‑Ⅱa fluorescence imaging[J]. Journal of the American Chemical Society, 142, 15146-15156(2020).

    [10] Xu R T, Jiao D, Long Q et al. Highly bright aggregation-induced emission nanodots for precise photoacoustic/NIR‑Ⅱ fluorescence imaging-guided resection of neuroendocrine neoplasms and sentinel lymph nodes[J]. Biomaterials, 289, 121780(2022).

    [11] Antaris A L, Chen H, Cheng K et al. A small-molecule dye for NIR-Ⅱ imaging[J]. Nature Materials, 15, 235-242(2016).

    [12] Han T Y, Wang Y J, Ma S J et al. Near-infrared carbonized polymer dots for NIR-Ⅱ bioimaging[J]. Advanced Science, 9, e2203474(2022).

    [13] Liu H L, Hong G S, Luo Z T et al. Atomic-precision gold clusters for NIR‑Ⅱ imaging[J]. Advanced Materials, 31, e1901015(2019).

    [14] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/Ⅱ windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).

    [15] Yang G, Mu X, Pan X X et al. Ligand engineering of Au44 nanoclusters for NIR‑Ⅱ luminescent and photoacoustic imaging-guided cancer photothermal therapy[J]. Chemical Science, 14, 4308-4318(2023).

    [16] Huang Y, Chen K, Liu L et al. Single atom-engineered NIR‑Ⅱ gold clusters with ultrahigh brightness and stability for acute kidney injury[J]. Small, 19, e2300145(2023).

    [17] Li Q, Zeman C J, Ma Z R et al. Bright NIR‑Ⅱ photoluminescence in rod-shaped icosahedral gold nanoclusters[J]. Small, 17, e2007992(2021).

    [18] Yu Z X, Musnier B, Wegner K D et al. High-resolution shortwave infrared imaging of vascular disorders using gold nanoclusters[J]. ACS Nano, 14, 4973-4981(2020).

    [19] Li D L, Liu Q, Qi Q R et al. Gold nanoclusters for NIR‑Ⅱ fluorescence imaging of bones[J]. Small, 16, e2003851(2020).

    [20] Dan Q, Yuan Z, Zheng S et al. Gold nanoclusters-based NIR-Ⅱ photosensitizers with catalase-like activity for boosted photodynamic therapy[J]. Pharmaceutics, 14, 1645(2022).

    [21] Song X R, Zhu W, Ge X G et al. A new class of NIR‑Ⅱ gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging[J]. Angewandte Chemie (International Ed. in English), 60, 1306-1312(2021).

    [22] Kong Y F, Santos-Carballal D, Martin D et al. A NIR‑Ⅱ‑ emitting gold nanocluster-based drug delivery system for smartphone-triggered photodynamic theranostics with rapid body clearance[J]. Materials Today, 51, 96-107(2021).

    [23] Baghdasaryan A, Wang F F, Ren F Q et al. Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR‑Ⅱ fluorescence imaging in preclinical cancer models[J]. Nature Communications, 13, 5613(2022).

    [24] Krishnamurthi R V, Feigin V L, Forouzanfar M H et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010[J]. The Lancet. Global Health, 1, e259-e281(2013).

    [25] Pasterkamp G, den Ruijter H M, Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease[J]. Nature Reviews Cardiology, 14, 21-29(2017).

    [26] Cheng S Y, Hang C, Ding L et al. Electronic blood vessel[J]. Matter, 3, 1664-1684(2020).

    [27] Hong G S, Diao S, Chang J L et al. Through-skull fluorescence imaging of the brain in a new near-infrared window[J]. Nature Photonics, 8, 723-730(2014).

    [28] Goldfarb J W, Weber J. Trends in cardiovascular MRI and CT in the U.S. medicare population from 2012 to 2017[J]. Radiology: Cardiothoracic Imaging, 3, e200112(2021).

    [29] Nishimiya K, Matsumoto Y, Shimokawa H. Recent advances in vascular imaging[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, e313-e321(2020).

    [30] Zhou T Y, Zha M L, Tang H et al. Controlling NIR-Ⅱ emitting gold organic/inorganic nanohybrids with tunable morphology and surface PEG density for dynamic visualization of vascular dysfunction[J]. Chemical Science, 14, 8842-8849(2023).

    [31] Morton D L, Wen D R, Wong J H et al. Technical details of intraoperative lymphatic mapping for early stage melanoma[J]. Archives of Surgery, 127, 392-399(1992).

    [32] Faries M B, Testori A A E, Gershenwald J E. Sentinel node biopsy for primary cutaneous melanoma[J]. Annals of Oncology, 32, 290-292(2021).

    [33] Dogan N U, Dogan S, Favero G et al. The basics of sentinel lymph node biopsy: anatomical and pathophysiological considerations and clinical aspects[J]. Journal of Oncology, 2019, 3415630(2019).

    [34] Moncayo V M, Aarsvold J N, Alazraki N P. Lymphoscintigraphy and sentinel nodes[J]. Journal of Nuclear Medicine, 56, 901-907(2015).

    [35] Chahid Y, Qiu X B, van de Garde E M W et al. Risk factors for nonvisualization of the sentinel lymph node on lymphoscintigraphy in breast cancer patients[J]. EJNMMI Research, 11, 54(2021).

    [36] Ballardini B, Santoro L, Sangalli C et al. The indocyanine green method is equivalent to the 99mTc-labeled radiotracer method for identifying the sentinel node in breast cancer: a concordance and validation study[J]. European Journal of Surgical Oncology (EJSO), 39, 1332-1336(2013).

    [37] Kim J H, Ku M, Yang J et al. Recent developments of ICG-guided sentinel lymph node mapping in oral cancer[J]. Diagnostics, 11, 891(2021).

    [38] Pang Z Y, Yan W X, Yang J E et al. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis[J]. ACS Nano, 16, 16019-16037(2022).

    [39] Zhou C, Long M, Qin Y P et al. Luminescent gold nanoparticles with efficient renal clearance[J]. Angewandte Chemie (International Ed. in English), 50, 3168-3172(2011).

    [40] Liu J B, Yu M X, Zhou C et al. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance[J]. Journal of the American Chemical Society, 135, 4978-4981(2013).

    [41] Zhang C L, Li C, Liu Y L et al. Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors[J]. Advanced Functional Materials, 25, 1314-1325(2015).

    [42] Liang M, Hu Q, Yi S X et al. Development of an Au nanoclusters based activatable nanoprobe for NIR‑Ⅱ fluorescence imaging of gastric acid[J]. Biosensors and Bioelectronics, 224, 115062(2023).

    [43] Wang W L, Kong Y F, Jiang J et al. Engineering the protein corona structure on gold nanoclusters enables red-shifted emissions in the second near-infrared window for gastrointestinal imaging[J]. Angewandte Chemie (International Ed. in English), 59, 22431-22435(2020).

    [44] Johnstone T C, Suntharalingam K, Lippard S J. The next generation of platinum drugs: targeted Pt(Ⅱ) agents, nanoparticle delivery, and Pt(Ⅳ) prodrugs[J]. Chemical Reviews, 116, 3436-3486(2016).

    [45] He S S, Li C, Zhang Q F et al. Tailoring platinum(Ⅳ) amphiphiles for self-targeting all-in-one assemblies as precise multimodal theranostic nanomedicine[J]. ACS Nano, 12, 7272-7281(2018).

    [46] Cong Y W, Xiao H H, Xiong H J et al. Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer[J]. Advanced Materials, 30, 1706220(2018).

    [47] Kurokawa H, Ishida T, Nishio K et al. γ‑glutamylcysteine synthetase gene overexpression results in increased activity of the ATP-dependent glutathione S-conjugate export pump and cisplatin resistance[J]. Biochemical and Biophysical Research Communications, 216, 258-264(1995).

    [48] Kelland L. The resurgence of platinum-based cancer chemotherapy[J]. Nature Reviews Cancer, 7, 573-584(2007).

    [49] Goto S, Iida T, Cho S et al. Overexpression of glutathione S-transferase π enhances the adduct formation of cisplatin with glutathione in human cancer cells[J]. Free Radical Research, 31, 549-558(1999).

    [50] Ling X, Chen X, Riddell I A et al. Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(Ⅳ) prodrugs and reversal of cisplatin resistance[J]. Nano Letters, 18, 4618-4625(2018).

    [51] Yang Y Y, Yu Y J, Chen H et al. Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/Ⅱ imaging and glutathione scavenging[J]. ACS Nano, 14, 13536-13547(2020).

    [52] Wang Y, Qi K, Yu S S et al. Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2[J]. Nano-Micro Letters, 11, 102(2019).

    [53] Yan R Q, Hu Y X, Liu F et al. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly[J]. Journal of the American Chemical Society, 141, 10331-10341(2019).

    [54] Sun W J, Luo L, Feng Y S et al. Aggregation-induced emission gold clustoluminogens for enhanced low-dose X-ray-induced photodynamic therapy[J]. Angewandte Chemie (International Ed. in English), 59, 9914-9921(2020).

    [55] Li Z F, Wang S L, Zhao J J et al. Gold nanocluster encapsulated nanorod for tumor microenvironment simultaneously activated NIR‑Ⅱ photoacoustic/photothermal imaging and cancer therapy[J]. Advanced Therapeutics, 6, 2200350(2023).

    [56] Yang G, Pan X X, Feng W B et al. Engineering Au44 nanoclusters for NIR‑Ⅱ luminescence imaging-guided photoactivatable cancer immunotherapy[J]. ACS Nano, 17, 15605-15614(2023).

    [57] Fan W P, Bu W B, Shen B et al. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy[J]. Advanced Materials, 27, 4155-4161(2015).

    [58] Gordijo C R, Abbasi A Z, Ali Amini M et al. Design of hybrid MnO2-polymer-lipid nanoparticles with tunable oxygen generation rates and tumor accumulation for cancer treatment[J]. Advanced Functional Materials, 25, 1858-1872(2015).

    [59] Wang Z Z, Zhang Y, Ju E G et al. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors[J]. Nature Communications, 9, 3334(2018).

    [60] Lin L S, Song J B, Song L et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy[J]. Angewandte Chemie International Edition, 57, 4902-4906(2018).

    [61] He T, Qin X L, Jiang C et al. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy[J]. Theranostics, 10, 2453-2462(2020).

    [62] Zhao H, Wang H, Li H R et al. Magnetic and near-infrared‑Ⅱ fluorescence Au-Gd nanoclusters for imaging-guided sensitization of tumor radiotherapy[J]. Nanoscale Advances, 4, 1815-1826(2022).

    [63] Ding B B, Zheng P, Ma P A et al. Manganese oxide nanomaterials: synthesis, properties, and theranostic applications[J]. Advanced Materials, 32, 1905823(2020).

    [64] Chen Q, Feng L Z, Liu J J et al. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy[J]. Advanced Materials, 28, 7129-7136(2016).

    [65] Fu L H, Hu Y R, Qi C et al. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy[J]. ACS Nano, 13, 13985-13994(2019).

    [66] He T, Jiang C, He J et al. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR‑Ⅱ photothermal-chemodynamic therapy[J]. Advanced Materials, 33, 2008540(2021).

    [67] Lillo C R, Calienni M N, Rivas Aiello B et al. BSA-capped gold nanoclusters as potential theragnostic for skin diseases: photoactivation, skin penetration, in vitro, and in vivo toxicity[J]. Materials Science and Engineering: C, 112, 110891(2020).

    [68] Sun S, Liu H L, Xin Q et al. Atomic engineering of clusterzyme for relieving acute neuroinflammation through lattice expansion[J]. Nano Letters, 21, 2562-2571(2021).

    [69] Zhou R B, Ohulchanskyy T Y, Xu Y J et al. Tumor-microenvironment-activated NIR‑Ⅱ nanotheranostic platform for precise diagnosis and treatment of colon cancer[J]. ACS Applied Materials & Interfaces, 14, 23206-23218(2022).

    [70] Jana D, He B, Chen Y et al. A defect-engineered nanozyme for targeted NIR‑Ⅱ photothermal immunotherapy of cancer[J]. Advanced Materials, 2206401(2022).

    [71] Moskalevska I, Faure V, Haye L et al. Intracellular accumulation and immunological response of NIR-Ⅱ polymeric nanoparticles[J]. International Journal of Pharmaceutics, 630, 122439(2023).

    [72] Huang J G, Lü Y, Li J C et al. A renal-clearable duplex optical reporter for real-time imaging of contrast-induced acute kidney injury[J]. Angewandte Chemie (International Ed. in English), 58, 17796-17804(2019).

    [73] Zhang X, Chen Y, He H S et al. ROS/RNS and base dual activatable merocyanine-based NIR‑Ⅱ fluorescent molecular probe for in vivo biosensing[J]. Angewandte Chemie International Edition, 60, 26337-26341(2021).

    [74] Yu M X, Zhou J C, Du B J et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles[J]. Angewandte Chemie International Edition, 55, 2787-2791(2016).

    [75] Huang J G, Xie C, Zhang X D et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction[J]. Angewandte Chemie (International Ed. in English), 58, 15120-15127(2019).

    [76] Ma H Z, Zhang X N, Liu L et al. Bioactive NIR-Ⅱ gold clusters for three-dimensional imaging and acute inflammation inhibition[J]. Science Advances, 9, eadh7828(2023).

    [77] van Elsland D, Neefjes J. Bacterial infections and cancer[J]. EMBO Reports, 19, e46632(2018).

    [78] Zheng K Y, Setyawati M I, Leong D T et al. Observing antimicrobial process with traceable gold nanoclusters[J]. Nano Research, 14, 1026-1033(2021).

    [79] Katla S K, Zhang J, Castro E et al. Atomically precise Au25(SG)18 nanoclusters: rapid single-step synthesis and application in photothermal therapy[J]. ACS Applied Materials & Interfaces, 10, 75-82(2018).

    [80] Zhang X D, Chen J, Luo Z T et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy[J]. Advanced Healthcare Materials, 3, 133-141(2014).

    [81] Xu J, Yu M X, Peng C Q et al. Dose dependencies and biocompatibility of renal clearable gold nanoparticles: from mice to non-human primates[J]. Angewandte Chemie (International Ed. in English), 57, 266-271(2018).

    [82] Zhang X D, Luo Z T, Chen J et al. Storage of gold nanoclusters in muscle leads to their biphasic in vivo clearance[J]. Small, 11, 1683-1690(2015).

    [83] Yan R J, Sun S, Yang J et al. Nanozyme-based bandage with single-atom catalysis for brain trauma[J]. ACS Nano, 13, 11552-11560(2019).

    [84] Mu X Y, Wang J Y, Li Y H et al. Redox trimetallic nanozyme with neutral environment preference for brain injury[J]. ACS Nano, 13, 1870-1884(2019).

    [85] Hao W T, Liu S J, Liu H L et al. In vivo neuroelectrophysiological monitoring of atomically precise Au25 clusters at an ultrahigh injected dose[J]. ACS Omega, 5, 24537-24545(2020).

    Siyu Li, Fangzheng Tian, Duyang Gao, Dehong Hu, Hairong Zheng, Zonghai Sheng, Shenghong Ju. NIR‑ Fluorescent Gold Nanoclusters for Biomedical Photonics: Advances and Challenges[J]. Chinese Journal of Lasers, 2024, 51(3): 0307201
    Download Citation