• Nano-Micro Letters
  • Vol. 15, Issue 1, 240 (2023)
Yue Liu1, Yadi Wang1, Na Wu2、5、*, Mingrui Han1, Wei Liu3、4, Jiurong Liu1、**, and Zhihui Zeng1、***
Author Affiliations
  • 1Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, People’s Republic of China
  • 2Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, People’s Republic of China
  • 3State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong 250100, China
  • 4Shenzhen Research Institute of Shandong University, Shenzhen, China
  • 5School of Chemistry and Chemical Engineering, Shandong University, Shandong 250100, China
  • show less
    DOI: 10.1007/s40820-023-01203-5 Cite this Article
    Yue Liu, Yadi Wang, Na Wu, Mingrui Han, Wei Liu, Jiurong Liu, Zhihui Zeng. Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding[J]. Nano-Micro Letters, 2023, 15(1): 240 Copy Citation Text show less
    References

    [1] F. Gholamirad, J.Q. Ge, M. Sadati, G.A. Wang, N. Taheri-Qazvini, Tuning the self-assembled morphology of Ti3C2Tx MXene-based hybrids for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14(43), 49158–49170 (2022).

    [2] X. Shen, J.K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2022).

    [3] F.S. Wu, Z.H. Tian, P.Y. Hu, J.W. Tang, X.Q. Xu, L. Pan, J. Liu, P.G. Zhang, Z.M. Sun, Lightweight and flexible PAN@PPy/MXene films with outstanding electromagnetic interference shielding and joule heating performance. Nanoscale 14(48), 18133–18142 (2022).

    [4] A. Ali, F. Hussain, M.F. Tahir, M. Ali, M.Z. Khan, B. Tomkova, J. Militky, M.T. Noman, M. Azeem, Fabrication of conductive, high strength and electromagnetic interference (EMI) shielded green composites based on waste materials. Polymers-Basel 14(7), 1289 (2022).

    [5] Z.H. Zhou, Q.C. Song, B.X. Huang, S.Y. Feng, C.H. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 15(7), 12405–12417 (2021).

    [6] S.Y. Feng, Y. Yi, B.X. Chen, P.C. Deng, Z.H. Zhou, C.H. Lu, Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 14(31), 36060–36070 (2022).

    [7] Y.S. Chen, Y. Huang, C.B. Park, R.C. Che, Z.Z. Yu, Electromagnetic interference shielding and microwave absorption materials: a virtual special issue. Carbon 186, 320–322 (2022).

    [8] J.Y. Cheng, C.B. Li, Y.F. Xiong, H.B. Zhang, H. Raza, S. Ullah, J.Y. Wu, G.P. Zheng, Q. Cao, D.Q. Zhang, Q.B. Zheng, R.C. Che, Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022).

    [9] M.L. Cheng, M.F. Ying, R.Z. Zhao, L.Z. Ji, H.X. Li, X.G. Liu, J. Zhang, Y.X. Li, X.L. Dong, X.F. Zhang, Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16(10), 16996–17007 (2022).

    [10] Y.Y. Gao, D. Bao, M.H. Zhang, Y.X. Cui, F. Xu, X.S. Shen, Y.J. Zhu, H.Y. Wang, Millefeuille-inspired thermal interface materials based on double self-assembly technique for efficient microelectronic cooling and electromagnetic interference shielding. Small 18(2), 2105567 (2022).

    [11] J.W. Song, K.J. Xu, J. He, H.J. Ye, L.X. Xu, Three-dimensional graphene/carbon nanotube electromagnetic shielding composite material based on melamine resin foam template. Polym. Compos. 44(5), 2836–2845 (2023).

    [12] M. Asandulesa, C. Hamciuc, A. Pui, C. Virlan, G. Lisa, A.I. Barzic, B. Oprisan, Cobalt ferrite/polyetherimide composites as thermally stable materials for electromagnetic interference shielding uses. Int. J. Mol. Sci. 24(2), 999 (2023).

    [13] T.Y. Zhang, H. Hu, J.L. Wang, Z. Fen, J.W. Guo, X.L. Liu, Research on electromagnetic shielding effectiveness of multi-layered LZ91/Al alloy composite materials by asynchronous accumulative roll bonding. Mater. Sci. 28(4), 434–439 (2022).

    [14] V. Lalan, S. Ganesanpotti, The smallest anions, induced porosity and graphene interfaces in C12A7: e– electrides: a paradigm shift in electromagnetic absorbers and shielding materials. J. Mater. Chem. C 10(3), 969–982 (2022).

    [15] Q.N. Lv, X.Y. Tao, S.H. Shi, Y.J. Li, N. Chen, From materials to components: 3D-printed architected honeycombs toward high-performance and tunable electromagnetic interference shielding. Compos. B Eng. 230(1), 109500 (2022).

    [16] S.Y. Feng, Z.Y. Zhan, Y. Yi, Z.H. Zhou, C.H. Lu, Facile fabrication of MXene/cellulose fiber composite film with homogeneous and aligned structure via wet co-milling for enhancing electromagnetic interference shielding performance. Compos. Part A—Appl. S. 157, 106907 (2022).

    [17] A. Rajan, S.K. Solaman, S. Ganesanpotti, Design and fabrication of layered electromagnetic interference shielding materials: a cost-effective strategy for performance prediction and efficiency tuning. ACS Appl. Mater. Interfaces 15(4), 5822–5835 (2023).

    [18] R. Kumar, B.C. Maji, M. Krishnan, Synthesis of 2D material MXene from Ti3AlC2 max-phase for electromagnetic shielding applications. AIP Conf. Proc. 2265(1), 030705 (2020).

    [19] Y.F. Yang, N. Wu, B. Li, W. Liu, F. Pan, Z.H. Zeng, J.R. Liu, Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16(9), 15042–15052 (2022).

    [20] X.L. Li, X.W. Yin, S. Liang, M.H. Li, L.F. Cheng, L.T. Zhang, 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material. Carbon 146(2), 210–217 (2019).

    [21] Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011).

    [22] H.B. Liu, R.L. Fu, X.Q. Su, B.Y. Wu, H. Wang, Y. Xu, X.H. Liu, MXene confined in shape-stabilized phase change material combining enhanced electromagnetic interference shielding and thermal management capability. Compos. Sci. Technol. 210(7), 108835 (2021).

    [23] J.F. Wang, H. Kang, Z.J. Cheng, Z.M. Xie, Y.S. Wang, Y.Y. Liu, Z.M. Fan, Research progress in Ti3C2Tx MXene-based electromagnetic interference shielding material. Nanoscale 49(6), 14–25 (2021).

    [24] S.J. Wang, D.S. Li, L. Jiang, D.N. Fang, Flexible and mechanically strong MXene/FeCo@C decorated carbon cloth: a multifunctional electromagnetic interference shielding material. Compos. Sci. Technol. 221, 109337 (2022).

    [25] X.W. Sun, X.D. Wu, P.C. Deng, D. Tian, Y.Y. Song, J.Q. Zhao, Q.Y. Li, S.Y. Feng, J. Zhang, C.H. Lu, H.W. Zou, Z.H. Zhou, Facile and universal fabrication of cellulose nanofibers from bulk lignocellulose materials and their applications in multifunctional epidermal electrophysiological signals monitoring. Ind. Crop Prod. 199, 116762 (2023).

    [26] J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon-based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74(7), 211–232 (2013).

    [27] S.A. Schelkunoff, A mathematical theory of linear arrays. Bell Syst. Tech. J. 22(1), 80–107 (1943).

    [28] Y. Yi, S. Y. Feng, Z. H. Zhou, C. H. Lu. Wet mechanical grinding regulates the micro-nano interfaces and structure of MXene/PVA composite for enhanced mechanical properties and thermal conductivity. Compos. Part A—Appl. S. (2022).

    [29] A. Nazir, H.J. Yu, L. Wang, M. Haroon, R.S. Ullah, S. Fahad, K.U.R. Naveed, T. Elshaarani, A. Khan, M. Usman, Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53(12), 8699–8719 (2018).

    [30] A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020).

    [31] C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, Z. Guo, Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140(9), 696–733 (2018).

    [32] D.Q. Zhang, S. Liang, J.X. Chai, T.T. Liu, X.Y. Yang, H. Wang, J.Y. Cheng, G.P. Zheng, M.S. Cao, Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids 134(5), 77–82 (2019).

    [33] S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009).

    [34] P. Kumar, U. Narayan Maiti, A. Sikdar, T. Kumar Das, A. Kumar, V. Sudarsan, Recent advances in polymer and polymer composites for electromagnetic interference shielding: Review and future prospects. Polym. Rev. 59(4), 687–738 (2019).

    [35] R.B. Schulz, V.C. Plantz, D.R. Brush, Shielding theory and practice. IEEE T. Electromagn. C. 30(3), 187–201 (1988).

    [36] S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A—Appl. Sci. Manuf. 114(8), 49–71 (2018).

    [37] H.S. Wang, G.B. Wang, W.L. Li, Q.T. Wang, W. Wei, Z.H. Jiang, S.L. Zhang, A material with high electromagnetic radiation shielding effectiveness fabricated using multi-walled carbon nanotubes wrapped with poly (ether sulfone) in a poly (ether ether ketone) matrix. J. Mater. Chem. C 22(39), 21232–21237 (2012).

    [38] C.F. Li, C.X. Zhou, J.B. Lv, B. Liang, R.K. Li, Y. Liu, J.H. Hu, K. Zeng, G. Yang, Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam. Carbon 149(4), 190–202 (2019).

    [39] Y. Yuan, W.L. Yin, M.L. Yang, F. Xu, X. Zhao, J.J. Li, Q.Y. Peng, X.D. He, S.Y. Du, Y.B. Li, Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon 130(12), 59–68 (2018).

    [40] D. Yevick, T. Friese, F. Schmidt, A comparison of transparent boundary conditions for the fresnel equation. J. Comput. Chem. 168(2), 433–444 (2001).

    [41] D.Q. Zhang, J.Y. Cheng, X.Y. Yang, B. Zhao, M.S. Cao, Electromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructures. J. Mater. Sci. 49(20), 7221–7230 (2014).

    [42] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016).

    [43] R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, B. Sahoo, Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017).

    [44] T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.K. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, C.M. Koo, Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020).

    [45] Q. Song, F. Ye, X.W. Yin, W. Li, H.J. Li, Y.S. Liu, K.Z. Li, K.Y. Xie, X.H. Li, Q.G. Fu, L.F. Cheng, L.T. Zhang, B.Q. Wei, Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017).

    [46] Y. Li, X. Tian, S.P. Gao, L. Jing, K.R. Li, H.T. Yang, F.F. Fu, J.Y. Lee, Y.X. Guo, J.S. Ho, P.Y. Chen, Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020).

    [47] B.P. Singh, P. Saini, T. Gupta, P. Garg, G. Kumar, I. Pande, S. Pande, R.K. Seth, S.K. Dhawan, R.B. Mathur, Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. J. Nanopart. Res. 13(12), 7065–7074 (2011).

    [48] B.R. Kim, H.K. Lee, E. Kim, S.H. Lee, Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films. Synth. Met. 160(17–18), 1838–1842 (2010).

    [49] M.Y. Peng, F.X. Qin. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. (2021).

    [50] Y.Z. Li, B.J. Wang, X.F. Sui, H. Xu, L.P. Zhang, Y. Zhong, Z.P. Mao, Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose 24(9), 3815–3823 (2017).

    [51] B. Wang, W.F. Li, J.P. Deng, Chiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallization. J. Mater. Sci. 52(8), 4575–4586 (2017).

    [52] A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C.M. Koo, Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CnTx (MXene). Science 369(6502), 446–450 (2020).

    [53] K. Hantanasirisakul, M. Alhabeb, A. Lipatov, K. Maleski, B. Anasori, P. Salles, C. Ieosakulrat, P. Pakawatpanurut, A. Sinitskii, S.J. May, Y. Gogotsi, Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31(8), 2941–2951 (2019).

    [54] M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359(11), 1265–1302 (2019).

    [55] K.P. Qian, Q.F. Zhou, H.M. Wu, J.H. Fang, M. Miao, Y.H. Yang, S.M. Cao, L.Y. Shi, X. Feng, Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos. Part. A—Appl. Sci. Manuf. 141, 106229 (2021).

    [56] J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu, A.G. Zhou, Z.ZYu. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017).

    [57] X.Y. Wu, B.Y. Han, H.B. Zhang, X. Xie, T.X. Tu, Y. Zhang, Y. Dai, R. Yang, Z.ZYu. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020).

    [58] S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu, S. Hong, Z.Z. Yu, Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018).

    [59] R.J. Bian, G.L. He, W.Q. Zhi, S.L. Xiang, T.W. Wang, D.Y. Cai, Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 7(3), 474–478 (2019).

    [60] Y.F. Yang, B. Li, N. Wu, W. Liu, S.Y. Zhao, C.J. Zhang, J.R. Liu, Z.H. Zeng, Biomimetic porous MXene-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Mater. Lett. 4(11), 2352–2361 (2022).

    [61] Y. Bai, S.H. Bi, W.K. Wang, N. Ding, Y.Y. Lu, M.Y. Jiang, C.B. Ding, W.W. Zhao, N. Liu, J. Bian, S.J. Liu, Q. Zhao, Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Mater. 20(4), 444–454 (2022).

    [62] F.Y. Hu, X.H. Wang, S. Bao, L.M. Song, S. Zhang, H.H. Niu, B.B. Fan, R. Zhang, H.X. Li, Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni particles of different morphologies. Chem. Eng. J. 440, 135855 (2022).

    [63] R. Khaledialidusti, A.K. Mishra, A. Barnoush, Atomic defects in monolayer ordered double transition metal carbide (Mo2TiC2Tx) MXene and CO2 adsorption. J. Mater. Chem. C 8(14), 4771–4779 (2020).

    [64] J.Y. Wang, P.L. He, Y.L. Shen, L.X. Dai, Z. Li, Y. Wu, C.H. An, FeNi nanoparticles on Mo2TiC2Tx MXene@nickel foam as robust electrocatalysts for overall water splitting. Nano Res. 14(10), 3474–3481 (2021).

    [65] X.Y. Zhao, K.W. Tang, C. Lee, C.F. Du, H. Yu, X.M. Wang, W.H. Qi, Q. Ye, Q. Y. Yan. Promoting the water-reduction kinetics and alkali tolerance of MoNi4 nanocrystals via a Mo2TiC2Tx induced built-in electric field. Small (2022).

    [66] P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao, J. Yuan, M.S. Cao, Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13), 6080–6088 (2019).

    [67] W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018).

    [68] F. Xie, F.F. Jia, L.H. Zhuo, Z.Q. Lu, L.M. Si, J.Z. Huang, M.Y. Zhang, Q. Ma, Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11(48), 23382–23391 (2019).

    [69] P. He, M.S. Cao, Y.Z. Cai, J.C. Shu, W.Q. Cao, J. Yuan, Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157(10), 80–89 (2020).

    [70] L. Wang, L.X. Chen, P. Song, C.B. Liang, Y.J. Lu, H. Qiu, Y.L. Zhang, J. Kong, J.W. Gu, Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos. B Eng. 171(4), 111–118 (2019).

    [71] R.T. Liu, M. Miao, Y.H. Li, J.F. Zhang, S.M. Cao, X. Feng, Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018).

    [72] Y.L. Zhang, L. Wang, J.L. Zhang, P. Song, Z.R. Xiao, C.B. Liang, H. Qiu, J. Kong, J.W. Gu, Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/Co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 183, 107833 (2019).

    [73] F.S. Yang, C.L. Li, W.Z. Xu, Z.S. Cai, Multifunctional antifogging coatings based on ZrO2 and SiO2 nanoparticles by spray-spin-blow layer-by-layer assembly. J. Mater. Res. 34(22), 3827–3836 (2019).

    [74] Y.B. Zhao, H.P. Liu, C.Y. Li, Y. Chen, S.Q. Li, R.C. Zeng, Z.L. Wang, Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy. Appl. Surf. Sci. 434(11), 787–795 (2018).

    [75] S. Javaid, A. Mahmood, H. Nasir, M. Iqbal, N. Ahmed, N.M. Ahmad, Layer-by-layer self-assembled dip coating for antifouling functionalized finishing of cotton textile. Polymers 14(13), 2540 (2022).

    [76] J. Alongi, F. Carosio, A. Frache, G. Malucelli, Layer by layer coatings assembled through dipping, vertical or horizontal spray for cotton flame retardancy. Carbohydr. Polym. 92(1), 114–119 (2013).

    [77] M.M. Xiong, Z.H. Ren, W.J. Liu, Fabrication of uv-resistant and superhydrophobic surface on cotton fabric by functionalized polyethyleneimine/SiO2 via layer-by-layer assembly and dip-coating. Cellulose 26(16), 8951–8962 (2019).

    [78] T. Charinpanitkul, W. Suthabanditpong, H. Watanabe, T. Shirai, K. Faungnawakij, N. Viriya-empikul, M. Fuji, Improved hydrophilicity of zinc oxide-incorporated layer-by-layer polyelectrolyte film fabricated by dip coating method. J. Ind. Eng. Chem. 18(4), 1441–1445 (2012).

    [79] B. Li, N. Wu, Y.F. Yang, F. Pan, C.X. Wang, G. Wang, L. Xiao, W. Liu, J.R. Liu, Z.H. Zeng, Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2022).

    [80] G.M. Weng, J.Y. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, A.D. Taylor, Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018).

    [81] X.X. Jin, J.F. Wang, L.Z. Dai, X.Y. Liu, L. Li, Y.Y. Yang, Y.X. Cao, W.J. Wang, H. Wu, S.Y. Guo, Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020).

    [82] B. Zhou, Z. Zhang, Y.L. Li, G.J. Han, Y.Z. Feng, B. Wang, D.B. Zhang, J.M. Ma, C.T. Liu, Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020).

    [83] Y. Wang, W. Wang, Q.B. Qi, N. Xu, D. Yu, Layer-by-layer assembly of pdms-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose 27(5), 2829–2845 (2020).

    [84] X.C. Jia, B. Shen, L.H. Zhang, W.G. Zheng, Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and joule heating. Compos. B Eng. 198, 108250 (2020).

    [85] X.F. Wang, Z.W. Lei, X.D. Ma, G.F. He, T. Xu, J. Tan, L.L. Wang, X.S. Zhang, L.J. Qu, X.J. Zhang, A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater. Chem. Eng. J. 430, 132605 (2022).

    [86] H.Y. Zhang, J.Y. Chen, H. Ji, N. Wang, S. Feng, H. Xiao, Electromagnetic interference shielding with absorption-dominant performance of Ti3C2Tx MXene/non-woven laminated fabrics. Text. Res. J. 91(21–22), 2448–2458 (2021).

    [87] X.S. Zhang, X.F. Wang, Z.W. Lei, L.L. Wang, M.W. Tian, S.F. Zhu, H. Xiao, X.N. Tang, L.J. Qu, Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. Acs. Appl. Mater. Interfaces 12(12), 14459–14467 (2020).

    [88] L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F.L. Guan, Z.Z. Yu, Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905179 (2019).

    [89] D.W. Hu, X.Y. Huang, S.T. Li, P.K. Jiang, Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 188, 107995 (2020).

    [90] C. Ma, T. Liu, W. Xin, G.Q. Xi, M.G. Ma, Breathable and wearable MXene-decorated air-laid paper with superior folding endurance and electromagnetic interference-shielding performances. Front. Mater. 6, 308 (2019).

    [91] Z.M. Fan, D.L. Wang, Y. Yuan, Y.S. Wang, Z.J. Cheng, Y.Y. Liu, Z.M. Xie, A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020).

    [92] M. Sang, Y.X. Wu, S. Liu, L.F. Bai, S. Wang, W.Q. Jiang, X.L. Gong, S.H. Xuan, Flexible and lightweight melamine sponge/MXene/polyborosiloxane (MSMP) hybrid structure for high-performance electromagnetic interference shielding and anti-impact safe-guarding. Compos. B Eng. 211, 108669 (2021).

    [93] B. Li, Y.F. Yang, N. Wu, S.Y. Zhao, H. Jin, G.L. Wang, X.Y. Li, W. Liu, J.R. Liu, Z.H. Zeng, Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16(11), 19293–19304 (2022).

    [94] W.T. Cao, C. Ma, S. Tan, M.G. Ma, P.B. Wan, F. Chen, Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro. Lett. 11(72), 1–17 (2019).

    [95] W. Xin, G.Q. Xi, W.T. Cao, C. Ma, T. Liu, M.G. Ma, J. Bian, Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. Rsc. Adv. 9(51), 29636–29644 (2019).

    [96] S.J. Wang, D.S. Li, L. Jiang, Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interfaces 6(19), 1900961 (2019).

    [97] C. Xiang, R.H. Guo, S.J. Lin, S.X. Jiang, J.W. Lan, C. Wang, C. Cui, H.Y. Xiao, Y. Zhang, Lightweight and ultrathin TiO2-Ti3C2Tx/graphene film with electromagnetic interference shielding. Chem. Eng. J. 360, 1158–1166 (2019).

    [98] J. Liu, Z.S. Liu, H.B. Zhang, W. Chen, Z.F. Zhao, Q.W. Wang, Z.Z. Yu, Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2020).

    [99] M. Miao, R.T. Liu, S. Thaiboonrod, L.Y. Shi, S.M. Cao, J.F. Zhang, J.H. Fang, X. Feng, Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. J. Mater. Chem. C 8(9), 3120–3126 (2020).

    [100] R.H. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, Z.Z. Yu, Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017).

    [101] H.L. Xu, X.W. Yin, X.L. Li, M.H. Li, S. Liang, L.T. Zhang, L.F. Cheng, Lightweight Ti2CTx MXene/poly (vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019).

    [102] F.Q. Qi, L. Wang, Y.L. Zhang, Z.L. Ma, H. Qiu, J.W. Gu, Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 21, 100512 (2021).

    [103] Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu, B. Li, S.B. Hauser, W.D. Yang, J.R. Liu, S.Y. Zhao, Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro. Lett. 14(1), 59 (2022).

    [104] Z.J. Xu, X. Ding, S.K. Li, F.Z. Huang, B.J. Wang, S.P. Wang, X. Zhang, F.H. Liu, H. Zhang, Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-infrared compatible shielding. ACS Appl. Mater. Interfaces 14(35), 40396–40407 (2022).

    [105] Z.Q. Lu, F.F. Jia, L.H. Zhuo, D.D. Ning, K. Gao, F. Xie, Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. B Eng. 217, 108853 (2021).

    [106] N. Wu, Y.F. Yang, C.X. Wang, Q.L. Wu, F. Pan, R.A. Zhang, J.R. Liu, Z.H. Zeng, Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35(1), 220969 (2023).

    [107] C.Z. Qi, X.Y. Wu, J. Liu, X.J. Luo, H.B. Zhang, Z.Z. Yu, Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and joule heating. J. Mater. Sci. Technol. 135(6), 213–220 (2023).

    [108] G.Y. Yang, S.Z. Wang, H.T. Sun, X.M. Yao, C.B. Li, Y.J. Li, J.J. Jiang, Ultralight, conductive Ti3C2Tx MXene/PEDOT: PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl. Mater. Interfaces 13(48), 57521–57531 (2021).

    [109] Y.Q. Du, J. Xu, J.Y. Fang, Y.T. Zhang, X.Y. Liu, P.Y. Zuo, Q.X. Zhuang, Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 10(12), 6690–6700 (2022).

    [110] P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim, S.M. Hong, M.K. Han, Y. Gogotsi, C.M. Koo, Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019).

    [111] C.X. Weng, G.R. Wang, Z.H. Dai, Y.M. Pei, L.Q. Liu, Z. Zhang, Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11(47), 22804–22812 (2019).

    [112] S.Q. Wu, D.M. Chen, W.B. Han, Y.S. Xie, G.D. Zhao, S. Dong, M.Y. Tan, H. Huang, S.B. Xu, G.Q. Chen, Y. Cheng, X.H. Zhang, Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 446, 137093 (2022).

    [113] D.Q. Zhao, L.Y. Dang, G.G. Wang, N. Sun, X.Y. Deng, J.C. Han, J.Q. Zhu, Y. Yang, Multifunctional, superhydrophobic and highly elastic MXene/bacterial cellulose hybrid aerogels enabled via silylation. J Mater. Chem. A 10(46), 24772–24782 (2022).

    [114] Z.Z. Guo, P.G. Ren, F. Yang, T. Wu, L.X. Zhang, Z.Y. Chen, S.Q. Huang, F. Ren, Mof-derived Co/C and MXene Co-decorated cellulose-derived hybrid carbon aerogel with a multi-interface architecture toward absorption-dominated ultra-efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15(5), 7308–7318 (2023).

    [115] Y. Wang, Q.B. Qi, G. Yin, W. Wang, DYu. Flexible, ultralight, and mechanically robust waterborne polyurethane/Ti3C2Tx MXene/nickel ferrite hybrid aerogels for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(18), 21831–21843 (2021).

    [116] Y.H. Li, Y. Chen, X.F. He, Z.Y. Xiang, T. Heinze, H.S. Qi, Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chem. Eng. J. 431, 133907 (2022).

    [117] Z.H. Zeng, C.X. Wang, G. Siqueira, D.X. Han, A. Huch, S. Abdolhosseinzadeh, J. Heier, F. Nuesch, C.F. Zhang, G. Nystrom, Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020).

    [118] Y. Cheng, W.D. Zhu, X.F. Lu, C. Wang, Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 98, 107229 (2022).

    [119] Y. Zhang, J. Yu, J.Y. Lu, C.J. Zhu, D.M. Qi, Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. J. Alloys Compd. 870, 159442 (2021).

    [120] B.H. Xia, T. Li, M.Q. Chen, S.B. Wang, W.F. Dong, L-citrulline-modified Ti3C2Tx MXene nanosheets embedded in polyacrylamide/sodium alginate hydrogels for electromagnetic interference shielding. ACS Appl. Nano Mater. 5(12), 18664–18669 (2022).

    [121] T. Zhao, P.Y. Xie, H.J. Wan, T.P. Ding, M.Q. Liu, J.L. Xie, E.E. Li, X.Q. Chen, T.W. Wang, Q. Zhang, Y.Y. Wei, Y.B. Gong, Q.Y. Wen, M. Hu, C.W. Qiu, X. Xiao, Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17(7), 622–628 (2023).

    [122] Y.Y. Zhu, J. Liu, T. Guo, J.J. Wang, X.Z. Tang, V. Nicolosi, Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic- interference shielding. ACS Nano 15(1), 1465–1474 (2021).

    [123] Y.H. Yu, P. Yi, W.B. Xu, X. Sun, G. Deng, X.F. Liu, J.L. Shui, R.H. Yu, Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro. Lett. 14(1), 77 (2022).

    [124] Z.S. Liu, Y. Zhang, H.B. Zhang, Y. Dai, J. Liu, X.F. Li, Z.Z. Yu, Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 8(5), 1673–1678 (2020).

    [125] N. Liu, Q.Q. Li, H.J. Wan, L.B. Chang, H. Wang, J.H. Fang, T.P. Ding, Q.Y. Wen, L.J. Zhou, X. Xiao, High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 13(1), 5551 (2022).

    [126] T.Z. Zhang, L.B. Chang, X.F. Zhang, H.J. Wan, N. Liu, L.J. Zhou, X. Xiao, Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides. Nat. Commun. 13(1), 6731 (2022).

    [127] D.J. Xu, Q. Huang, L.K. Yang, Y.J. Chen, Z.M. Lu, H.J. Liu, P.J. Han, L. Guo, C. Wang, C.C. Liu, Experimental design of composite films with thermal management and electromagnetic shielding properties based on polyethylene glycol and MXene. Carbon 202(11), 1–12 (2023).

    [128] T.T. Xue, Y. Yang, D.Y. Yu, Q. Wali, Z.Y. Wang, X.S. Cao, W. Fan, T.X. Liu, 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro. Lett. 15(1), 45 (2023).

    [129] M. Zhu, X.X. Yan, H.L. Xu, Y.J. Xu, L. Kong, Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 182(6), 806–814 (2021).

    [130] Y.F. Yang, M.R. Han, W. Liu, N. Wu, J.R. Liu, Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res. 15(10), 9614–9630 (2022).

    [131] Z. Wang, Z. Cheng, L. Xie, X.L. Hou, C.Q. Fang, Flexible and lightweight Ti3C2Tx MXene/Fe3O4@PANI composite films for high-performance electromagnetic interference shielding. Ceram. Int. 47(4), 5747–5757 (2021).

    Yue Liu, Yadi Wang, Na Wu, Mingrui Han, Wei Liu, Jiurong Liu, Zhihui Zeng. Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding[J]. Nano-Micro Letters, 2023, 15(1): 240
    Download Citation