• Frontiers of Optoelectronics
  • Vol. 4, Issue 3, 270 (2011)
Enming XU1、*, Peili LI1, Fei WANG2, and Jianfei GUAN1
Author Affiliations
  • 1School of Opto-Electronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
  • 2School of Mathematics and Physics, Chongqing University of Technology, Chongqing 400050, China
  • show less
    DOI: 10.1007/s12200-011-0131-3 Cite this Article
    Enming XU, Peili LI, Fei WANG, Jianfei GUAN. Microwave photonic filters based on optical semiconductor amplifier[J]. Frontiers of Optoelectronics, 2011, 4(3): 270 Copy Citation Text show less
    References

    [1] Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319-330

    [2] Yao J P. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314-335

    [3] Capmany J, Ortega B, pastor D. A tutorial on microwave photonic filters. Journal of Lightwave Technology, 2006, 24(1): 201-229

    [4] Dong J J, Zhang X L, Xu J, Huang D X, Fu S N, Shum P. 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter. Optics Express, 2007, 15(6): 2907-2914

    [5] Dong J J, Zhang X L, Xu J, Huang D X, Fu S, Shum P. Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier. Optics Letters, 2007, 32(10): 1223-1225

    [6] Xu J, Zhang X L, Dong J J, Liu D M, Huang D X. High-speed alloptical differentiator based on a semiconductor optical amplifier and an optical filter. Optics Letters, 2007, 32(13): 1872-1874

    [7] Yi X K, Wei F, Hong N J, Chao L. Tunable microwave filter design using wavelength conversion technique and high dispersion time delays. IEEE Photonics Technology Letters, 2001, 13(8): 857-859

    [8] Liu DM, Hong N J, Chao L.Wavelength conversion based on crossgain modulation of ASE spectrum of SOA. IEEE Photonics Technology Letters, 2000, 12(9): 1222-1224

    [9] Xu E M, Zhang X L, Zhou L N, Zhang Y, Huang D X. All-optical microwave notch filter with flat passband based on semiconductor optical amplifier. Optics Communications, 2009, 282(12): 2297-2300

    [10] Xu E M, Zhang X L, Zhou L N, Zhang Y, Huang D X. A simple microwave photonic notch filter based on a semiconductor optical amplifier. Journal of Optics A: Pure and Applied Optics, 2009, 11(8): 085405

    [11] Zhou L N, Zhang X L, Xu E M, Huang D X. Q value analysis of a first-order IIR microwave photonic filter based on SOA. Acta Physica Sinica, 2009, 58(2): 1036-1041

    [12] Xu E M, Zhang X L, Zhou L N, Zhang Y, Yu Y, Li X, Huang D X. All-optical microwave filter with high frequency selectivity based on semiconductor optical amplifier and optical filter. Journal of Lightwave Technology, 2010, 28(16): 2358-2365

    [13] Xu E M, Zhang X L, Zhou L N, Zhang Y, Huang D X. Hybrid active-passive microwave photonic filter with high quality factor. Chinese Physics Letters, 2009, 26(9): 094208

    [14] Xu E M, Zhang X L, Zhou L N, Zhang Y, Yu Y, Li X, Huang D X. Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Optics Letters, 2010, 35(8): 1242-1244

    [15] Zhou J L, Xia L, Chen X P, Dong X P, Shum P. Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser. Applied Physics B: Lasers and Optics, 2008, 91(1): 99-103

    Enming XU, Peili LI, Fei WANG, Jianfei GUAN. Microwave photonic filters based on optical semiconductor amplifier[J]. Frontiers of Optoelectronics, 2011, 4(3): 270
    Download Citation