• Chinese Optics Letters
  • Vol. 20, Issue 6, 060602 (2022)
Zonghui Tao, Wanzhuo Ma*, Lei Du, Xin Li, Yan Lou, Tianshu Wang, and Huilin Jiang**
Author Affiliations
  • College of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    DOI: 10.3788/COL202220.060602 Cite this Article Set citation alerts
    Zonghui Tao, Wanzhuo Ma, Lei Du, Xin Li, Yan Lou, Tianshu Wang, Huilin Jiang. Single-wall carbon nanotube assisted all-optical wavelength conversion at 2.05 µm[J]. Chinese Optics Letters, 2022, 20(6): 060602 Copy Citation Text show less
    References

    [1] W. Ma, T. Wang, Y. Zhang, P. Liu, Y. Su, Q. Jia, M. Bi, P. Zhang, H. Jiang. Widely tunable 2 µm continuous-wave and mode-locked fiber laser. Appl. Opt., 56, 3342(2017).

    [2] P. Lin, T. Wang, W. Ma, J. Chen, Z. Jiang, C. Yu. 2-µm free-space data transmission based on an actively mode-locked holmium-doped fiber laser. IEEE Photonics Technol. Lett., 32, 223(2020).

    [3] S. Aozasa, H. Masuda, T. Sakamoto, K. Shikano, M. Shimizu. Gain-shifted TDFA employing high concentration doping technique with high internal power conversion efficiency of 70%. Electron. Lett., 38, 361(2002).

    [4] Q. Xu, V. R. Almeida, M. Lipson. Micrometer-scale all-optical wavelength converter on silicon. Opt. Lett., 30, 2733(2005).

    [5] S. J. B. Yoo. Wavelength conversion technologies for WDM network applications. J. Lightwave Technol., 14, 955(1996).

    [6] A. Zhang, M. S. Demokan. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber. Opt. Lett., 30, 2375(2005).

    [7] Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, H. Zhang. Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band. Adv. Opt. Mater., 7, 1801777(2019).

    [8] R. A. Faris, S. K. Al-Hayali, A. H. Al-Janabi. Au coated ZnO/MWCNTs nanocomposites film-induced four-wave-mixing effect for multi-wavelength generation in erbium-doped fiber laser. Opt. Commun., 485, 126746(2021).

    [9] F. E. Durak, S. A. Sadik, K. Boumediene, M. Khelladi, A. Altuncu. Characterization of four wave mixing effect in dense wavelength division multiplexing systems. 28th Signal Processing and Communications Applications Conference (SIU), 1(2020).

    [10] R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, A. L. Gaeta. Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides. Opt. Lett., 36, 1263(2011).

    [11] Q. Jin, T. Yin, Z. Tu, D. Chen, Y. Shi, D. Dai, S. Gao. Performance evaluation of continuous-wave mid-infrared wavelength conversion in silicon waveguides. Appl. Opt., 58, 2584(2019).

    [12] S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat. Photonics, 4, 561(2010).

    [13] N. A. Otman, M. Čada. Phase-matched mid-infrared difference frequency generation using a nanostructured gallium arsenide metamaterial with nanoholes. IEEE Photonics J., 12, 5900110(2020).

    [14] Z. Tu, X. Guan, D. Chen, H. Hu, X. Wang, S. Gao. 2 µm mid-infrared silicon-rich silicon nitride/silicon hybrid nonlinear waveguides. Opt. Commun., 481, 126544(2021).

    [15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [16] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys., 5, 438(2009).

    [17] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys., 5, 398(2009).

    [18] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech., 7, 699(2012).

    [19] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem., 5, 263(2013).

    [20] C. Qin, Y. Gao, Z. Qiao, L. Xiao, S. Jia. Atomic-layered MoS2 as a tunable optical platform. Adv. Opt. Mater., 4, 1429(2016).

    [21] X. Ling, H. Wang, S. Huang, F. Xia, M. S. Dresselhaus. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA, 112, 4523(2015).

    [22] A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang,, D. Akinwande. Buckled two-dimensional Xene sheets. Nature Mater., 16, 163(2017).

    [23] M. Liu, Z. W. Wei, A. P. Luo, W. C. Xu, Z. C. Luo. Recent progress on applications of 2D material decorated microfiber photonic devices in pulse shaping and all-optical signal processing. Nanophotonics, 9, 2641(2020).

    [24] B. Xu, A. Martinez, S. Yamashita. Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion. IEEE Photonics Technol. Lett., 24, 1792(2012).

    [25] Y. Song, Y. Chen, X. Jiang, W. Liang, Z. Han. Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater., 6, 1701287(2018).

    [26] L. Du, X. Ding, D. Han, L. Sui, Z. Tao, W. Ma, W. Tianshu, Y. Wang. 1.9 µm all-optical wavelength converter based on a graphene oxide coated microfiber. Opt. Express, 29, 40286(2021).

    [27] L. Wu, W. Huang, Y. Wang, J. Zhao, D. Ma, Y. Xiang, J. Li, J. S. Ponraj, S. C. Dhanabalan, H. Zhang. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater., 29, 1806346(2019).

    [28] H. Hu, Z. Shi, K. Khan, R. Cao, W. Liang, A. K. Tareen, Y. Zhang, W. Huang, Z. Guo, X. Luo, H. Zhang. Recent advances in doping engineering of black phosphorus. J. Mater. Chem., 8, 5421(2020).

    [29] Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, H. Zhang. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev., 13, 1800313(2019).

    [30] Q. Wu, Y. Wang, W. Huang, C. Wang, Z. Zheng, M. Zhang, H. Zhang. MXene-based high-performance all-optical modulators for actively Q-switched pulse generation. Photon. Res., 8, 1140(2020).

    [31] W. Huang, C. Ma, C. Li, Y. Zhang, L. Hu, T. Chen, Y. Tang, J. Ju, H. Zhang. Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics, 9, 2577(2020).

    [32] J. Zheng, Z. Yang, S. Chen, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics, 4, 1466(2017).

    [33] S. Yamashita. Nonlinear optics in carbon nanotube, graphene, and related 2D materials. APL Photonics, 4, 034301(2019).

    [34] J. Liu, Y. Wang, Z. Qu, X. Fan. 2 µm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber. Opt. Laser Technol., 44, 960(2012).

    [35] W. B. Cho, F. Rotermund. Carbon-nanotube-based bulk solid-state lasers. Woodhead Publishing Series in Electronic and Optical Materials, 144(2013).

    [36] S. Hitosugi, W. Nakanishi, T. Yamasaki, H. Isobe. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun., 2, 492(2011).

    [37] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba. Optical properties of single-wall carbon nanotubes. Synth. Met., 103, 2555(1999).

    [38] Y. Chen, T. Lu, G. Wang, X. Zhang, N. R. Raravikar, Y. Zhao, L. S. Schadler, P. M. Ajayan. Ultrafast optical switch properties of single-wall carbon nanotube polymer composites at 1.55 µm. Conference on Lasers and Electro-Optics, CFH4(2002).

    [39] J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun. 152 fs nanotube-mode-locked thulium-doped all-fiber laser. Sci. Rep., 6, 28885(2016).

    [40] B. Xu, M. Omura, M. Takiguchi, A. Martinez, T. Ishigure, S. Yamashita, T. Kuga. Carbon nanotube/polymer composite coated tapered fiber for four wave mixing based wavelength conversion. Opt. Express, 21, 3651(2013).

    Data from CrossRef

    [1] Genglin Li, Wenhui Du, Shuo Sun, Qingming Lu, Zhixiang Chen, Hongliang Liu, Yandong Ma, Xiaoli Sun, Yuechen Jia, Feng Chen. 2D layered MSe2 (M = Hf, Ti and Zr) for compact lasers: nonlinear optical properties and GHz lasing. Nanophotonics, 0(2022).

    Zonghui Tao, Wanzhuo Ma, Lei Du, Xin Li, Yan Lou, Tianshu Wang, Huilin Jiang. Single-wall carbon nanotube assisted all-optical wavelength conversion at 2.05 µm[J]. Chinese Optics Letters, 2022, 20(6): 060602
    Download Citation