• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1201004 (2021)
Jingcheng Shang1、2、3, Yizhou Liu1、2, Shengzhi Zhao1、2, Tianli Feng1、2、3、*, Kejian Yang1、3、4, Wenchao Qiao1、2、3, Yuantao Zhao1、2、3, and Tao Li1、2、3、**
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2Shandong Key Laboratory for Laser Technologies and Applications, Shandong University, Qingdao, Shandong 266237, China
  • 3Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao, Shandong 266237, China;
  • 4Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
  • show less
    DOI: 10.3788/CJL202148.1201004 Cite this Article Set citation alerts
    Jingcheng Shang, Yizhou Liu, Shengzhi Zhao, Tianli Feng, Kejian Yang, Wenchao Qiao, Yuantao Zhao, Tao Li. High Repetition-Rate Optical Parametric Chirped-Pulse Amplifiers[J]. Chinese Journal of Lasers, 2021, 48(12): 1201004 Copy Citation Text show less
    References

    [1] Shank C, Ippen E, Dienes A. Passive mode locking of the CW dye laser[J]. IEEE Journal of Quantum Electronics, 8, 525(1972). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1077015

    [2] Liu W W, Xue J Y, Su Q et al. Research progress on ultrafast laser filamentation[J]. Chinese Journal of Lasers, 47, 0500003(2020).

    [3] Li Z X, Gong C, Hua L Q et al. Supercontinuum generation in calcium fluoride crystals using high-intensity femtosecond laser[J]. Chinese Journal of Lasers, 46, 0508021(2019).

    [4] Fattahi H, Barros H G, Gorjan M et al. Third-generation femtosecond technology[J]. Optica, 1, 45-63(2014).

    [5] Pertot Y, Schmidt C, Matthews M et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source[J]. Science, 355, 264-267(2017). http://europepmc.org/abstract/MED/28059713

    [6] Popmintchev T, Chen M C, Popmintchev D et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [7] Attar A R, Bhattacherjee A, Pemmaraju C D et al. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction[J]. Science, 356, 54-59(2017). http://www.ncbi.nlm.nih.gov/pubmed/28386006

    [8] Seres E, Seres J, Spielmann C. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation[J]. Applied Physics Letters, 89, 181919(2006).

    [9] Chang Z H, Rundquist A, Wang H W et al. Generation of coherent soft X-rays at 2.7 nm using high harmonics[J]. Physical Review Letters, 79, 2967(1997). http://www.onacademic.com/detail/journal_1000036582306410_aede.html

    [10] Adachi S, Ishii N, Kanai T et al. 5-fs, multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz[J]. Optics Express, 16, 14341-14352(2008).

    [11] Batysta F, Antipenkov R, Novák J et al. Broadband OPCPA system with 11 mJ output at 1 kHz, compressible to 12 fs[J]. Optics Express, 24, 17843-17848(2016).

    [12] Budriūnas R, Stanislauskas T, Adamonis J et al. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate[J]. Optics Express, 25, 5797-5806(2017).

    [13] Ishii N, Kaneshima K, Kitano K et al. Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier[J]. Optics Letters, 37, 4182-4184(2012). http://www.ncbi.nlm.nih.gov/pubmed/23073404

    [14] Feng T L, Heilmann A, Bock M et al. 27 W 2.1 μm OPCPA system for coherent soft X-ray generation operating at 10 kHz[J]. Optics Express, 28, 8724-8733(2020). http://www.researchgate.net/publication/339495793_27_W_21_m_OPCPA_system_for_coherent_soft_X-ray_generation_operating_at_10_kHz

    [15] Zhao K, Zhong H Z, Yuan P et al. Generation of 120 GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier[J]. Optics Letters, 38, 2159-2161(2013). http://www.opticsinfobase.org/abstract.cfm?URI=ol-38-13-2159

    [16] von Grafenstein L, Bock M, Ueberschaer D et al. 2.05 μm chirped pulse amplification system at a 1 kHz repetition rate: 2.4 ps pulses with 17 GW peak power[J]. Optics Letters, 45, 3836-3839(2020). http://www.researchgate.net/publication/341915674_205_m_chirped_pulse_amplification_system_at_a_1_kHz_repetition_rate-24_ps_pulses_with_17_GW_peak_power

    [17] Wang Z Y, Heuermann T, Gebhardt M et al. 108 W average power ultrashort pulses with GW-level peak power from a Tm-doped fiber CPA system[J]. Proceedings of SPIE, 11260, 112600K(2020). http://www.researchgate.net/publication/339423868_108_W_average_power_ultrashort_pulses_with_GW-level_peak_power_from_a_Tm-doped_fiber_CPA_system

    [18] Leshchenko V E, Talbert B K, Lai Y H et al. High-power few-cycle Cr: ZnSe mid-infrared source for attosecond soft X-ray physics[J]. Optica, 7, 981-988(2020). http://www.researchgate.net/publication/342091643_High-power_few-cycle_CrZnSe_mid-infrared_source_for_attosecond_soft_x-ray_physics/download

    [19] Ding C Y, Xiong W, Fan T T et al. High flux coherent super-continuum soft X-ray source driven by a single-stage, 10 mJ, Ti∶Sapphire amplifier-pumped OPA[J]. Optics Express, 22, 6194-6202(2014). http://dx.doi.org/10.1364/oe.22.006194

    [20] Liu Y Z, Krogen P, Hong K H et al. Fiber-amplifier-pumped, 1-MHz, 1-μJ, 2.1-μm, femtosecond OPA with chirped-pulse DFG front-end[J]. Optics Express, 27, 9144-9154(2019). http://www.researchgate.net/publication/331759319_Fiber-amplifier-pumped_1-MHz_1-J_21-m_femtosecond_OPA_with_chirped-pulse_DFG_front-end

    [21] Müller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020). http://arxiv.org/abs/2101.08501v1

    [22] Wandt C, Herkommer C, Jung R et al. Ultrafast thin-disk based CPA system with >1 kW output power and <500 fs pulse duration[C]. //High Intensity Lasers and High Field Phenomena, February 16-18, 2020, Istanbul, Turkey, HM2B, 4(2020).

    [23] Nubbemeyer T, Kaumanns M, Ueffing M et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 42, 1381-1384(2017). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=283086

    [24] Migal E, Pushkin A, Bravy B et al. 3.5-mJ 150-fs Fe∶ZnSe hybrid mid-IR femtosecond laser at 4.4 μm for driving extreme nonlinear optics[J]. Optics Letters, 44, 2550-2553(2019).

    [25] Prinz S, Haefner M, Teisset C Y et al. CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power[J]. Optics Express, 23, 1388-1394(2015). http://www.ncbi.nlm.nih.gov/pubmed/25835897

    [26] Fattahi H, Teisset C Y, Pronin O et al. Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification[J]. Optics Express, 20, 9833-9840(2012). http://www.ncbi.nlm.nih.gov/pubmed/22535076/

    [27] Höppner H, Hage A, Tanikawa T et al. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers[J]. New Journal of Physics, 17, 053020(2015). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015NJPh...17e3020H&amp;db_key=PHY&amp;link_type=ABSTRACT

    [28] Mero M, Noack F, Bach F et al. High-average-power, 50-fs parametric amplifier front-end at 1.55 μm[J]. Optics Express, 23, 33157-33163(2015). http://europepmc.org/abstract/MED/26831983

    [29] Hong K H, Huang S W, Moses J et al. High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 μm pumped by a picosecond cryogenic Yb∶YAG laser[J]. Optics Express, 19, 15538-15548(2011). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5950684

    [30] Deng Y, Schwarz A, Fattahi H et al. Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm[J]. Optics Letters, 37, 4973-4975(2012). http://labs.europepmc.org/abstract/MED/23202108

    [31] Elu U, Baudisch M, Pires H et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier[J]. Optica, 4, 1024-1029(2017). http://www.researchgate.net/publication/319288590_High_average_power_and_single-cycle_pulses_from_a_mid-IR_optical_parametric_chirped_pulse_amplifier

    [32] Thiré N, Maksimenka R, Kiss B et al. 4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise[J]. Optics Express, 25, 1505-1514(2017).

    [33] Zou X, Li W K, Liang H K et al. 300 μJ, 3 W, few-cycle, 3 μm OPCPA based on periodically poled stoichiometric lithium tantalate crystals[J]. Optics Letters, 44, 2791-2794(2019). http://www.researchgate.net/publication/333366990_300_mJ_3_W_few-cycle_3_mm_OPCPA_based_on_periodically_poled_stoichiometric_lithium_tantalate_crystals

    [34] Zou X, Li W K, Liang H K et al. Sub-milijoule, 3 μm optical parametric chirped-pulse amplifier at 10 kHz repetition rate[C]. //CLEO: QELS_Fundamental Science 2019, May 5-10, 2019, San Jose, California, FTh1B, 5(2019).

    [35] Bhar G C, Chaudhary A K, Kumbhakar P et al. A comparative study of laser-induced surface damage thresholds in BBO crystals and effect of impurities[J]. Optical Materials, 27, 119-123(2004). http://www.ingentaconnect.com/content/el/09253467/2004/00000027/00000001/art00022

    [36] Traub T, Ruebel F, L’huillier J A. Efficient injection-seeded kHz picosecond LBO optical parametric generator[J]. Applied Physics B, 102, 25-29(2011).

    [37] Wesch W, Rensberg J, Schmidt M et al. Damage evolution in LiNbO3 due to electronic energy deposition below the threshold for direct amorphous track formation[J]. Journal of Applied Physics, 126, 125105(2019). http://www.researchgate.net/publication/336036096_Damage_evolution_in_LiNbO_3_due_to_electronic_energy_deposition_below_the_threshold_for_direct_amorphous_track_formation

    [38] Baudisch M, Hemmer M, Pires H et al. Performance of MgO∶PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power[J]. Optics Letters, 39, 5802-5805(2014). http://europepmc.org/abstract/med/25361089

    [39] Zheng Y Q, Wu A H, Gao P et al. Laser damage threshold and nonlinear optical properties of large aperture elements of YCOB crystal[J]. Proceedings of SPIE, 8206, 82062G(2012). http://spie.org/Publications/Proceedings/Paper/10.1117/12.910508

    [40] Hildenbrand A, Kieleck C, Tyazhev A et al. Laser damage studies of CdSiP2 and ZnGeP2 nonlinear crystals with nanosecond pulses at 1064 and 2090 nm[J]. Proceedings of SPIE, 8964, 896417(2014). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2039050

    [41] Hädrich S, Demmler S, Rothhardt J et al. High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification[J]. Optics Letters, 36, 313-315(2011). http://www.ncbi.nlm.nih.gov/pubmed/21283174

    [42] Rothhardt J, Demmler S, Hädrich S et al. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate[J]. Optics Express, 20, 10870-10878(2012).

    [43] Prinz S, Schnitzenbaumer M, Potamianos D et al. Thin-disk pumped optical parametric chirped pulse amplifier delivering CEP-stable multi-mJ few-cycle pulses at 6 kHz[J]. Optics Express, 26, 1108-1124(2018).

    [44] Mecseki K, Windeler M K R, Miahnahri A et al. High average power 88 W OPCPA system for high-repetition-rate experiments at the LCLS X-ray free-electron laser[J]. Optics Letters, 44, 1257-1260(2019).

    [45] Mackonis P, Rodin A M. OPCPA investigation with control over the temporal shape of 1.2 ps pump pulses[J]. Optics Express, 28, 12020-12027(2020). http://www.researchgate.net/publication/340180251_OPCPA_investigation_with_control_over_the_temporal_shape_of_12_ps_pump_pulses

    [46] Hrisafov S, Pupeikis J, Chevreuil P A et al. High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz[J]. Optics Express, 28, 40145-40154(2020). http://www.ncbi.nlm.nih.gov/pubmed/33379546

    [47] Golz T, Buß J H, Schulz M et al. High power CEP-stable OPCPA at 800 nm[J]. Proceedings of SPIE, 11259, 112591L(2020).

    [48] Furch F J A, Witting T, Osolodkov M et al. High-repetition rate optical parametric chirped pulse amplification system for attosecond science experiments[J]. Proceedings of SPIE, 11034, 110340I(2019). http://www.researchgate.net/publication/332690048_High-repetition_rate_optical_parametric_chirped_pulse_amplification_system_for_attosecond_science_experiments

    [49] Ishii N, Kaneshima K, Kanai T et al. Generation of ultrashort intense optical pulses at 1.6 μm from a bismuth triborate-based optical parametric chirped pulse amplifier with carrier-envelope phase stabilization[J]. Journal of Optics, 17, 094001(2015).

    [50] Yin Y C, Li J, Ren X M et al. High-efficiency optical parametric chirped-pulse amplifier in BiB3O6 for generation of 3 mJ, two-cycle, carrier-envelope-phase-stable pulses at 1.7 μm[J]. Optics Letters, 41, 1142-1145(2016).

    [51] Ishii N, Kaneshima K, Kanai T et al. Generation of sub-two-cycle millijoule infrared pulses in an optical parametric chirped-pulse amplifier and their application to soft X-ray absorption spectroscopy with high-flux high harmonics[J]. Journal of Optics, 20, 014003(2018). http://adsabs.harvard.edu/abs/2018JOpt...20a4003I

    [52] Rigaud P, van de Walle A, Hanna M et al. Supercontinuum-seeded few-cycle mid-infrared OPCPA system[J]. Optics Express, 24, 26494-26502(2016). http://europepmc.org/abstract/med/27857382

    [53] Mero M, Heiner Z, Petrov V et al. 43 W, 155 μm and 125 W, 31 μm dual-beam, sub-10 cycle, 100 kHz optical parametric chirped pulse amplifier[J]. Optics Letters, 43, 5246-5249(2018). http://www.ncbi.nlm.nih.gov/pubmed/30382978

    [54] Grguraš I, Golz T, Schulz M et al. A high power (11 W), tunable (1.45--1.65 μm) OPCPA for THz generation in organic crystals[C]. //CLEO: Science and Innovations 2019, May 5-10, 2019, San Jose, California, STh3E, 3(2019).

    [55] Windeler M K R, Mecseki K, Miahnahri A et al. 100 W high-repetition-rate near-infrared optical parametric chirped pulse amplifier[J]. Optics Letters, 44, 4287-4290(2019). http://www.researchgate.net/publication/335368129_100_W_high-repetition-rate_near-infrared_optical_parametric_chirped_pulse_amplifier

    [56] Alismail A, Wang H C, Barbiero G et al. CEP-stable source for high-energy field synthesis[J]. Science Advances, 6, eaax3408(2020).

    [57] Jargot G, Daher N, Lavenu L et al. Self-compression in a multipass cell[J]. Optics Letters, 43, 5643-5646(2018). http://www.ncbi.nlm.nih.gov/pubmed/30439915

    [58] Silva F, Bates P K, Esteban-Martin A et al. High-average-power, carrier-envelope phase-stable, few-cycle pulses at 2.1 μm from a collinear BiB3O6 optical parametric amplifier[J]. Optics Letters, 37, 933-935(2012).

    [59] Hong K H, Lai C J, Siqueira J P et al. Multi-mJ, kHz, 2.1 μm optical parametric chirped-pulse amplifier and high-flux soft X-ray high-harmonic generation[J]. Optics Letters, 39, 3145-3148(2014). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=208176

    [60] Shamir Y, Rothhardt J, Hädrich S et al. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate[J]. Optics Letters, 40, 5546-5549(2015). http://www.ncbi.nlm.nih.gov/pubmed/26625047

    [61] Lai C J, Hong K H, Siqueira J P et al. Multi-mJ mid-infrared kHz OPCPA and Yb-doped pump lasers for tabletop coherent soft X-ray generation[J]. Journal of Optics, 17, 094009(2015). http://adsabs.harvard.edu/abs/2015JOpt...17i4009L

    [62] Bigler N, Phillips C R, Pupeikis J et al. Ultra-broadband optical parametric chirped-pulse amplifier generating 9.1 W at 2.2 μm[C]. //2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich.(2017).

    [63] Neuhaus M, Wnuk P, Fuest H et al. High power CEP-stable 2 μm source based on fiber-laser seeded Innoslab with 100-kHz to 1-MHz repetition rate[C]. //2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich.(2017).

    [64] Neuhaus M, Fuest H, Seeger M et al. 10 W CEP-stable few-cycle source at 2 μm with 100 kHz repetition rate[J]. Optics Express, 26, 16074-16085(2018). http://www.researchgate.net/publication/325700861_10_W_CEP-stable_few-cycle_source_at_2_m_with_100_kHz_repetition_rate

    [65] Bigler N, Pupeikis J, Hrisafov S et al. High-power OPCPA generating 1.7 cycle pulses at 2.5 μm[J]. Optics Express, 26, 26750-26757(2018). http://www.researchgate.net/publication/327946426_High-power_OPCPA_generating_17_cycle_pulses_at_25_m

    [66] Pupeikis J, Chevreuil P A, Bigler N et al. Water window soft X-ray source enabled by a 25 W few-cycle 2.2 μm OPCPA at 100 kHz[J]. Optica, 7, 168-171(2020). http://arxiv.org/abs/1910.03236

    [67] Pupeikis J, Chevreuil P A, Phillips C R et al. Power scaling of few-cycle PPLN-based mid-IR OPCPA[C]. //Advanced Solid State Lasers 2019, September 29-October 3, 2019, Vienna Austria, AM2A, 1(2019).

    [68] Heilmann A, Bock M, Ehrentraut L et al. 33 W OPCPA at 10 kHz repetition rate with four cycle pulse duration at 2.1 μm based on a single pump laser[J]. EPJ Web of Conferences, 243, 10002(2020).

    [69] Chalus O, Thai A, Bates P K et al. Six-cycle mid-infrared source with 3.8 μJ at 100 kHz[J]. Optics Letters, 35, 3204-3206(2010). http://www.ncbi.nlm.nih.gov/pubmed/20890334

    [70] Thai A, Hemmer M, Bates P K et al. Sub-250-mrad, passively carrier-envelope-phase-stable mid-infrared OPCPA source at high repetition rate[J]. Optics Letters, 36, 3918-3920(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-19-3918

    [71] Mayer B W, Phillips C R, Gallmann L et al. Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μm[J]. Optics Letters, 38, 4265-4268(2013).

    [72] Lu F M, Kanai T, Matsumoto Y et al. KTA-based optical parametric amplifiers for MJ-class mid-IR source[C]. // CLEO: Applications and Technology 2016, June 5-10, 2016, San Jose, California, JTu5A, 72(2016).

    [73] Yin Y C, Li J, Ren X M et al. High-energy two-cycle pulses at 3.2 μm by a broadband-pumped dual-chirped optical parametric amplification[J]. Optics Express, 24, 24989-24998(2016). http://www.ncbi.nlm.nih.gov/pubmed/27828439

    [74] Wang S, Gerrity M, Backus S et al. Multi-mJ, 1 kHz, 3.1 μm OPCPA[C]. //CLEO: Science and Innovations 2017, May 14-19, 2017, San Jose, California, STh1L, 5(2017).

    [75] Mero M, Petrov V. High-power, few-cycle, angular dispersion compensated mid-infrared pulses from a noncollinear optical parametric amplifier[J]. IEEE Photonics Journal, 9, 1-8(2017).

    [76] He H J, Wang Z H, Hu C Y et al. 520-μJ mid-infrared femtosecond laser at 2.8 μm by 1-kHz KTA optical parametric amplifier[J]. Applied Physics B, 124, 1-5(2018). http://link.springer.com/10.1007/s00340-018-6896-y

    [77] Thiré N, Maksimenka R, Kiss B et al. Highly stable, 15 W, few-cycle, 65 mrad CEP-noise mid-IR OPCPA for statistical physics[J]. Optics Express, 26, 26907-26915(2018). http://www.researchgate.net/publication/328026362_Highly_stable_15_W_few-cycle_65_mrad_CEP-noise_mid-IR_OPCPA_for_statistical_physics

    [78] Alves J, Pires H, João C P et al. 5 mJ, 5-optical-cycles operation of a 3 μm OPCPA pumped by a 1 μm source[C]. ∥Frontiers in Optics 2020, September 14-17, 2020, Washington, United States, JTh4A, 14(2020).

    [79] von Grafenstein L, Bock M, Ueberschaer D et al. 5 μm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate[J]. Optics Letters, 42, 3796-3799(2017). http://www.ncbi.nlm.nih.gov/pubmed/28957130

    [80] Bock M, von Grafenstein L, Griebner U et al. Generation of millijoule few-cycle pulses at 5 μm by indirect spectral shaping of the idler in an optical parametric chirped pulse amplifier[J]. Journal of the Optical Society of America B, 35, C18-C24(2018). http://www.researchgate.net/publication/328226000_Generation_of_millijoule_few-cycle_pulses_at_5_mm_by_indirect_spectral_shaping_of_the_idler_in_an_optical_parametric_chirped_pulse_amplifier

    [81] von Grafenstein L, Bock M, Griebner U et al. Few-cycle midwave-IR OPCPA with 32 GW peak power at a 1 kHz repetition rate[C]. //2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany.(2019).

    [82] Qu S Z, Liang H K, Liu K et al. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2[J]. Optics Letters, 44, 2422-2425(2019). http://www.ncbi.nlm.nih.gov/pubmed/31090696

    [83] von Grafenstein L, Bock M, Ueberschaer D et al. Multi-millijoule, few-cycle 5 μm OPCPA at 1 kHz repetition rate[J]. Optics Letters, 45, 5998-6001(2020). http://www.researchgate.net/publication/344951774_Multi-millijoule_few-cycle_5_m_OPCPA_at_1_kHz_repetition_rate

    [84] Qian J Y, Peng Y J, Li Y Y et al. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification[J]. Photonics Research, 8, 421-425(2020). http://www.researchgate.net/publication/338787883_Femtosecond_mid-IR_optical_vortex_laser_based_on_optical_parametric_chirped_pulse_amplification

    [85] Xu X Z, Gui Y X, Wang Y G. Research progress of high quality and large size laser crystals[J]. Laser & Infrared, 37, 295-299(2007).

    [86] Sobolev E, Komm P, Noah S et al. Parametric amplification in large-aperture diffusion-bonded periodically poled crystals[J]. Optics Letters, 44, 1261-1264(2019).

    [87] Yuan L G, Chen G, Hou T Y et al. Damage threshold measurement of 2 μm laser on ZnGeP2 crystal and its influencing factors[J]. Chinese Journal of Lasers, 42, 0802001(2015).

    [88] Fu Y X, Xue B, Midorikawa K et al. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification[J]. Applied Physics Letters, 112, 241105(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=78c823428fca509e23f962bd39dda726

    [89] Fu Y X, Takahashi E J, Midorikawa K. High-energy infrared femtosecond pulses by dual-chirped optical parametric amplification[C]. //CLEO: Science and Innovations 2015, May 10-15, 2015, San Jose, California, SF1M, 4(2015).

    [90] Yin Y C, Li J, Ren X M et al. High-energy two-cycle pulses at 3.2 μm by a broadband-pumped dual-chirped optical parametric amplification[J]. Optics Express, 24, 24989-24998(2016). http://www.ncbi.nlm.nih.gov/pubmed/27828439

    [91] Schmidt B E, Thiré N, Lassonde P et al. Frequency domain optical parametric amplification[C]. //Conference on Lasers and Electro-Optics/Pacific Rim 2015, August 24-28, 2015, Busan Republic, Korea, 25C1_1(2015).

    [92] Wang P F, Li Y Y, Li W K et al. 26 mJ/100 Hz CEP-stable near-single-cycle 4 μm laser based on OPCPA and hollow-core fiber compression[J]. Optics Letters, 43, 2197-2200(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=38346c2f0841bd55a7ea34ce4fbbde97

    Jingcheng Shang, Yizhou Liu, Shengzhi Zhao, Tianli Feng, Kejian Yang, Wenchao Qiao, Yuantao Zhao, Tao Li. High Repetition-Rate Optical Parametric Chirped-Pulse Amplifiers[J]. Chinese Journal of Lasers, 2021, 48(12): 1201004
    Download Citation