• Photonics Research
  • Vol. 8, Issue 7, 1226 (2020)
Min Gao1、2、3, Weimin Yang1, Zhengying Wang2, Shaowei Lin4, Jinfeng Zhu2、5、*, and Zhilin Yang1、6、*
Author Affiliations
  • 1Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
  • 2Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China
  • 3College of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
  • 4The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
  • 5e-mail: nanoantenna@hotmail.com
  • 6e-mail: zlyang@xmu.edu.cn
  • show less
    DOI: 10.1364/PRJ.390343 Cite this Article Set citation alerts
    Min Gao, Weimin Yang, Zhengying Wang, Shaowei Lin, Jinfeng Zhu, Zhilin Yang. Plasmonic resonance-linewidth shrinkage to boost biosensing[J]. Photonics Research, 2020, 8(7): 1226 Copy Citation Text show less
    References

    [1] M. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys., 57, 783-826(1985).

    [2] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [3] S. I. Azzam, V. M. Shalaev, A. Boltasseva, A. V. Kildishev. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).

    [4] X. Tian, Z.-Y. Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photon. Res., 4, 146-152(2016).

    [5] L. Meng, M. Sun. Tip-enhanced photoluminescence spectroscopy of monolayer MoS2. Photon. Res., 5, 745-749(2017).

    [6] J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, J. Guo. Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photon., 5, 776-781(2018).

    [7] L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science, 362, 69-72(2018).

    [8] J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, J. F. Li. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy, 4, 60-67(2019).

    [9] J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, Q. H. Liu. Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics. Nanophotonics, 8, 307-316(2019).

    [10] J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, S. Guo. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens. Bioelectron., 150, 111905(2020).

    [11] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA, 100, 13549-13554(2003).

    [12] H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 9, 205-213(2010).

    [13] M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas. Photodetection with active optical antennas. Science, 332, 702-704(2011).

    [14] K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, G. Strangi. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater., 15, 621-627(2016).

    [15] Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, J. F. Wang. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun., 4, 2381(2013).

    [16] C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 8, 95-103(2014).

    [17] D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, S. A. Maier. Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays. ACS Nano, 4, 432-438(2010).

    [18] B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, B. Ren. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm. Adv. Mater., 30, 1706031(2018).

    [19] J. Guo, Z. Li, H. Guo. Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing. Opt. Express, 24, 17259-17271(2016).

    [20] A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, D. S. Sutherland. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett., 8, 3893-3898(2008).

    [21] N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett., 10, 4952-4955(2010).

    [22] F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, H. Altug. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics, 13, 390-396(2019).

    [23] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442-453(2008).

    [24] D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, F. De Angelis. Nanoporous gold metamaterials for high sensitivity plasmonic sensing. Nanoscale Horiz., 4, 1153-1157(2019).

    [25] V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, A. N. Grigorenko. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater., 12, 304-309(2013).

    [26] S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, J.-B. Han. Polarization state-based refractive index sensing with plasmonic nanostructures. Nanoscale, 7, 20171-20179(2015).

    [27] R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, M. Käll. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. Nanoscale, 8, 10576-10581(2016).

    [28] H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, P. Fischer. Dispersion and shape engineered plasmonic nanosensors. Nat. Commun., 7, 11331(2016).

    [29] N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, P. Vavassori. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun., 6, 6150(2015).

    [30] B. Caballero, A. García-Martín, J. C. Cuevas. Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photon., 3, 203-208(2016).

    [31] A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, B. N. Chichkov. Optical response features of Si-nanoparticle arrays. Phys. Rev. B, 82, 045404(2010).

    [32] J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, Q. H. Gong. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat. Commun., 9, 4858(2018).

    [33] R. Ameling, H. Giessen. Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett., 10, 4394-4398(2010).

    [34] S. Malynych, G. Chumanov. Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J. Am. Chem. Soc., 125, 2896-2898(2003).

    [35] Y. Hua, A. K. Fumani, T. W. Odom. Tunable lattice plasmon resonances in 1D nanogratings. ACS Photon., 6, 322-326(2019).

    [36] D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, T. W. Odom. Structural engineering in plasmon nanolasers. Chem. Rev., 118, 2865-2881(2018).

    [37] W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B, 54, 6227-6244(1996).

    [38] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [39] Z. L. Cao, H. C. Ong. Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array. Opt. Express, 24, 12489-12500(2016).

    [40] Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan, H. C. Ong. Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion. Phys. Rev. B, 95, 155415(2017).

    [41] Z. L. Cao, H. C. Ong. Study of the momentum-resolved plasmonic field energy of Bloch-like surface plasmon polaritons from periodic nanohole array. Opt. Express, 25, 30626-30635(2017).

    [42] M. Lin, Z. L. Cao, H. C. Ong. Determination of the excitation rate of quantum dots mediated by momentum-resolved Bloch-like surface plasmon polaritons. Opt. Express, 25, 6092-6103(2017).

    [43] M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, Z. Yang. Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays. Nanoscale, 11, 16428-16436(2019).

    [44] C. Genet, T. W. Ebbesen. Light in tiny holes. Nature, 445, 39-46(2007).

    [45] H. W. Gao, W. Zhou, T. W. Odom. Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library. Adv. Funct. Mater., 20, 529-539(2010).

    [46] D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, C. Lienau. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett., 91, 143901(2003).

    [47] J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, Q. H. Liu. Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials. Nanophotonics, 9, 167-176(2020).

    [48] J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, Z. Yang. An ultranarrow SPR linewidth in the UV region for plasmonic sensing. Nanoscale, 11, 4061-4066(2019).

    [49] M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, Z. Wang. Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes. Nanophotonics, 9, 815-822(2020).

    [50] A. B. Dahlin. Sensing applications based on plasmonic nanopores: the hole story. Analyst, 140, 4748-4759(2015).

    [51] D. Garoli, H. Yamazaki, N. Maccaferri, M. Wanunu. Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications. Nano Lett., 19, 7553-7562(2019).

    [52] P. B. Johnson. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [53] C. Zhao, J. Chen, H. Li, T. Li, S. Zhu. Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes. Chin. Opt. Lett., 16, 070901(2018).

    [54] F. Gan, C. Sun, H. Li, Q. Gong, J. Chen. On-chip polarization splitter based on a multimode plasmonic waveguide. Photon. Res., 6, 47-53(2018).

    CLP Journals

    [1] Ruoqin Yan, Tao Wang, Xinzhao Yue, Huimin Wang, Yu-Hui Zhang, Peng Xu, Lu Wang, Yuandong Wang, Jinyan Zhang. Highly sensitive plasmonic nanorod hyperbolic metamaterial biosensor[J]. Photonics Research, 2022, 10(1): 84

    [2] Jie Zheng, Jinfeng Zhu, Zhilin Yang. Extremely narrow resonant linewidths in metal-dielectric heterostructures[J]. Photonics Research, 2022, 10(7): 1754

    [3] Francesco Arcadio, Luigi Zeni, Domenico Montemurro, Caterina Eramo, Stefania Di Ronza, Chiara Perri, Girolamo D’Agostino, Guido Chiaretti, Giovanni Porto, Nunzio Cennamo. Biochemical sensing exploiting plasmonic sensors based on gold nanogratings and polymer optical fibers[J]. Photonics Research, 2021, 9(7): 1397

    Min Gao, Weimin Yang, Zhengying Wang, Shaowei Lin, Jinfeng Zhu, Zhilin Yang. Plasmonic resonance-linewidth shrinkage to boost biosensing[J]. Photonics Research, 2020, 8(7): 1226
    Download Citation