• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 4, 040011 (2023)
Yin JIANG1、2、* and Jinfeng LIAO3
Author Affiliations
  • 1Beihang University, Beijing 100083, China
  • 2Hangzhou Innovation Institute Yuhang, Beihang University, Hangzhou 310023, China
  • 3Physics Department, Indiana University, Bloomington, IN47405, USA
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.040011 Cite this Article
    Yin JIANG, Jinfeng LIAO. Phase transitions of strong interaction matter in vorticity fields[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040011 Copy Citation Text show less
    References

    [1] Alford M G, Schmitt A, Rajagopal K et al. Color superconductivity in dense quark matter[J]. Reviews of Modern Physics, 80, 1455-1515(2008).

    [2] Fukushima K, Hatsuda T. The phase diagram of dense QCD[J]. Reports on Progress in Physics, 74, 014001(2011).

    [3] Bzdak A, Esumi S, Koch V et al. Mapping the phases of quantum chromodynamics with beam energy scan[J]. Physics Reports, 853, 1-87(2020).

    [4] Ma Y G. New type of double-slit interference experiment at Fermi scale[J]. Nuclear Science and Techniques, 34, 16(2023).

    [5] Wang X N. Vector meson spin alignment by the strong force field[J]. Nuclear Science and Techniques, 34, 15(2023).

    [6] Chen H L, Huang X G, Liao J F. QCD phase structure under rotation[M]. Strongly Interacting Matter under Rotation, 349-379(2021).

    [7] Gusynin V P, Miransky V A, Shovkovy I A. Catalysis of dynamical flavor symmetry breaking by a magnetic field in 2+1 dimensions[J]. Physical Review Letters, 73, 3499-3502(1994).

    [8] Gusynin V P, Miransky V A, Shovkovy I A. Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field[J]. Nuclear Physics B, 462, 249-290(1996).

    [9] Bali G S, Bruckmann F, Endrődi G et al. The QCD phase diagram for external magnetic fields[J]. Journal of High Energy Physics, 2012, 44(2012).

    [10] Bali G S, Bruckmann F, Endrődi G et al. QCD quark condensate in external magnetic fields[J]. Physical Review D, 86, 071502(2012).

    [11] Andersen J O, Naylor W R, Tranberg A. Phase diagram of QCD in a magnetic field: a review[EB/OL]. arXiv(2014). https://arxiv.org/abs/1411.7176

    [12] Miransky V A, Shovkovy I A. Quantum field theory in a magnetic field: from quantum chromodynamics to graphene and Dirac semimetals[J]. Physics Reports, 576, 1-209(2015).

    [13] Huang X G. Electromagnetic fields and anomalous transports in heavy-ion collisions-a pedagogical review[J]. Reports on Progress in Physics Physical Society (Great Britain), 79, 076302(2016).

    [14] Kharzeev D E, Liao J, Voloshin S A et al. Chiral magnetic and vortical effects in high-energy nuclear collisions—a status report[J]. Progress in Particle and Nuclear Physics, 88, 1-28(2016).

    [15] Hattori K, Huang X G. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions[J]. Nuclear Science and Techniques, 28, 26(2017).

    [16] STAR Collaboration. Global Λ hyperon polarization in nuclear collisions[J]. Nature, 548, 62-65(2017).

    [17] Adam J, Adamczyk L, Adams J R et al. Global polarization of Λ hyperons in Au+Au collisions at sNN=200 GeV[J]. Physical Review C, 98, 014910(2018).

    [18] STAR Collaboration, Adam J, Adamczyk L et al. Polarization of Λ (Λ¯) hyperons along the beam direction in Au+Au collisions atsNN=200 GeV[J]. Physical Review Letters, 123, 132301(2019).

    [19] Deng W T, Huang X G. Vorticity in heavy-ion collisions[J]. Physical Review C, 93, 064907(2016).

    [20] Jiang Y, Lin Z W, Liao J F. Rotating quark-gluon plasma in relativistic heavy-ion collisions[J]. Physical Review C, 94, 044910(2016).

    [21] Shi S, Li K, Liao J. Searching for the subatomic swirls in the CuCu and CuAu collisions[EB/OL]. arXiv(2017). https://arxiv.org/abs/1712.00878

    [22] Deng X G, Huang X G, Ma Y G et al. Vorticity in low-energy heavy-ion collisions[J]. Physical Review C, 101, 064908(2020).

    [23] Chernodub M N, Gongyo S. Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions[J]. Physical Review D, 95, 096006(2017).

    [24] Liu Y Z, Zahed I. Rotating Dirac fermions in a magnetic field in 1+2 and 1+3 dimensions[J]. Physical Review D, 98, 014017(2018).

    [25] Liu Y Z, Zahed I. Pion condensation by rotation in a magnetic field[J]. Physical Review Letters, 120, 032001(2018).

    [26] Chernodub M N, Gongyo S. Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics[J]. Journal of High Energy Physics, 2017, 136(2017).

    [27] Wang L X, Jiang Y, He L Y et al. Local suppression and enhancement of the pairing condensate under rotation[J]. Physical Review C, 100, 034902(2019).

    [28] Zhang H, Hou D F, Liao J F. Mesonic condensation in isospin matter under rotation[J]. Chinese Physics C, 44, 111001(2020).

    [29] Sun F, Huang A P. Properties of strange quark matter under strong rotation[J]. Physical Review D, 106, 076007(2022).

    [30] Wang X Y, Wei M H, Li Z B et al. Quark matter under rotation in the NJL model with vector interaction[J]. Physical Review D, 99, 016018(2019).

    [31] Chen X, Zhang L, Li D N et al. Gluodynamics and deconfinement phase transition under rotation from holography[J]. Journal of High Energy Physics, 2021, 132(2021).

    [32] Braga N R F, Faulhaber L F, Junqueira O C. Confinement-deconfinement temperature for a rotating quark-gluon plasma[J]. Physical Review D, 105, 106003(2022).

    [33] Yamamoto A, Hirono Y. Lattice QCD in rotating frames[J]. Physical Review Letters, 111, 081601(2013).

    [34] Chen H L, Fukushima K, Huang X G et al. Analogy between rotation and density for Dirac fermions in a magnetic field[J]. Physical Review D, 93, 104052(2016).

    [35] Jiang Y, Liao J F. Pairing phase transitions of matter under rotation[J]. Physical Review Letters, 117, 192302(2016).

    [36] Ebihara S, Fukushima K, Mameda K. Boundary effects and gapped dispersion in rotating Fermionic matter[J]. Physics Letters B, 764, 94-99(2017).

    [37] Huang X G, Nishimura K, Yamamoto N. Anomalous effects of dense matter under rotation[J]. Journal of High Energy Physics, 2018, 69(2018).

    [38] Chernodub M N, Gongyo S. Edge states and thermodynamics of rotating relativistic fermions under magnetic field[J]. Physical Review D, 96, 096014(2017).

    [39] Wang L X, Jiang Y, He L Y et al. Chiral vortices and pseudoscalar condensation due to rotation[J]. Physical Review D, 100, 114009(2019).

    [40] Chen H L, Huang X G, Mameda K. Do charged pions condense in a magnetic field with rotation?[EB/OL]. arXiv(2019). https://arxiv.org/abs/1910. 02700

    [41] Cao G Q, He L Y. Rotation induced charged pion condensation in a strong magnetic field: a Nambu-Jona-Lasino model study[J]. Physical Review D, 100, 094015(2019).

    [42] Zhang Z, Shi C, Luo X F et al. Chiral phase transition in a rotating sphere[J]. Physical Review D, 101, 074036(2020).

    [43] Zhang Z, Shi C, Luo X F et al. Rotating fermions inside a spherical boundary[J]. Physical Review D, 102, 065002(2020).

    [44] Cao G Q. Charged rho superconductor in the presence of magnetic field and rotation[J]. The European Physical Journal C, 81, 148(2021).

    [45] Vilenkin A. Macroscopic parity-violating effects: neutrino fluxes from rotating black holes and in rotating thermal radiation[J]. Physical Review D, 20, 1807-1812(1979).

    [46] Erdmenger J, Haack M, Kaminski M et al. Fluid dynamics of R-charged black holes[J]. Journal of High Energy Physics, 2009, 55(2009).

    [47] Banerjee N, Bhattacharya J, Bhattacharyya S et al. Hydrodynamics from charged black branes[J]. Journal of High Energy Physics, 2011, 94(2011).

    [48] Son D T, Surówka P. Hydrodynamics with triangle anomalies[J]. Physical Review Letters, 103, 191601(2009).

    [49] Yang Y G, Fang R H, Wang Q et al. Quark coalescence model for polarized vector mesons and baryons[J]. Physical Review C, 97, 034917(2018).

    [50] Tuchin K. Spin contribution to the dissociation of bound states in rotating medium in magnetic field[J]. Nuclear Physics A, 1016, 122338(2021).

    [51] Roenko A, Braguta V, Kotov A Y et al. Lattice study of the confinement/deconfinement transition in rotating gluodynamics[C], 125(2022).

    [52] Li H, Petersen H, Pang L G et al. Local and global Λ polarization in a vortical fluid[J]. Nuclear Physics A, 967, 772-775(2017).

    [53] Li H, Pang L G, Wang Q et al. Global Λ polarization in heavy-ion collisions from a transport model[J]. Physical Review C, 96, 054908(2017).

    [54] Zubkov M A. Hall effect in the presence of rotation[J]. EPL (Europhysics Letters), 121, 47001(2018).

    [55] Jiang Y, Lin Z W, Huang X G et al. Strongly interacting matter under rotation[J]. EPJ Web of Conferences, 171, 07004(2018).

    [56] Gao J H, Pang J Y, Wang Q. Chiral vortical effect in Wigner function approach[J]. Physical Review D, 100, 016008(2019).

    [57] Saha A, Sanyal S. Vorticity with varying collision energy in relativistic heavy ion collisions[C], 728-729(2019).

    [58] Guo Y, Shi S Z, Feng S Q et al. Magnetic field induced polarization difference between hyperons and anti-hyperons[J]. Physics Letters B, 798, 134929(2019).

    [59] Wei D X, Deng W T, Huang X G. Thermal vorticity and spin polarization in heavy-ion collisions[J]. Physical Review C, 99, 014905(2019).

    [60] Ayala A, Alberto Ayala Torres M, Cuautle E et al. Core meets corona: a two-component source to explain Λ and Λ¯ global polarization in semi-central heavy-ion collisions[J]. Physics Letters B, 810, 135818(2020).

    [61] Ayala A, Cuautle E, Domínguez I et al. Two-component source to explain Λ and Λ¯ global polarization in non-central heavy-ion collisions[J]. Journal of Physics: Conference Series, 1602, 012032(2020).

    [62] Ayala A, de la Cruz D, Hernández L A et al. Relaxation time for the alignment between the spin of a finite-mass quark or antiquark and the thermal vorticity in relativistic heavy-ion collisions[J]. Physical Review D, 102, 056019(2020).

    [63] Ayala A, de la Cruz D, Hernández-Ortíz S et al. Relaxation time for quark spin and thermal vorticity alignment in heavy-ion collisions[J]. Physics Letters B, 801, 135169(2020).

    [64] Saha A, Sanyal S. Flow and vorticity with varying chemical potential in relativistic heavy ion collisions[J]. International Journal of Modern Physics E, 29, 2050001(2020).

    [65] Ayala A, Domínguez I, Maldonado I et al. Rise and fall of Λ and Λ¯ global polarization in semi-central heavy-ion collisions at HADES, NICA and RHIC energies from the core-corona model[J]. Physical Review C, 105, 034907(2022).

    [66] Fujimoto Y, Fukushima K, Hidaka Y. Deconfining phase boundary of rapidly rotating hot and dense matter and analysis of moment of inertia[J]. Physics Letters B, 816, 136184(2021).

    [67] Guo Y, Liao J F, Wang E K et al. Hyperon polarization from the vortical fluid in low-energy nuclear collisions[J]. Physical Review C, 104, L041902(2021).

    [68] Fu B, Xu K, Huang X G et al. Hydrodynamic study of hyperon spin polarization in relativistic heavy ion collisions[J]. Physical Review C, 103, 024903(2021).

    [69] Sun Y F, Zhang Z, Ko C M et al. Evolution of Λ polarization in the hadronic phase of heavy-ion collisions[J]. Physical Review C, 105, 034911(2022).

    [70] Liang Z T, Wang X N. Globally polarized quark-gluon plasma in noncentral A+A collisions[J]. Physical Review Letters, 94, 102301(2005).

    [71] Liang Z T, Wang X N. Spin alignment of vector mesons in non-central A+A collisions[J]. Physics Letters B, 629, 20-26(2005).

    [72] Liu Y C, Huang X G. Anomalous chiral transports and spin polarization in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 56(2020).

    [73] Becattini F, Lisa M A. Polarization and vorticity in the quark-gluon plasma[J]. Annual Review of Nuclear and Particle Science, 70, 395-423(2020).

    [74] Huang X G, Liao J F, Wang Q et al. Vorticity and spin polarization in heavy ion collisions: transport models[M]. Strongly Interacting Matter under Rotation, 281-308(2021).

    [75] Gao J H, Liang Z T, Wang Q et al. Global polarization effect and spin-orbit coupling in strong interaction[M]. Strongly Interacting Matter under Rotation, 195-246(2021).

    [76] Becattini F. Polarization in relativistic fluids: a quantum field theoretical derivation[M]. Strongly Interacting Matter under Rotation, 15-52(2021).

    [77] Vilenkin A. Quantum field theory at finite temperature in a rotating system[J]. Physical Review D, 21, 2260-2269(1980).

    [78] Xu T, Jiang Y. Proca equation and vector field quantization in a rotating system[J]. Chinese Physics C, 45, 114102(2021).

    [79] Nielsen N K. Asymptotic freedom as a spin effect[J]. American Journal of Physics, 49, 1171-1178(1981).

    [80] Schneider R A. Debye screening at finite temperature reexamined[J]. Physical Review D, 66, 036003(2002).

    [81] Schneider R A. Note on asymptotic freedom at high temperatures[J]. Physical Review D, 67, 057901(2003).

    [82] Jiang Y. Chiral vortical catalysis[J]. The European Physical Journal C, 82, 949(2022).

    [83] Wu H Z, Pang L G, Huang X G et al. Local spin polarization in high energy heavy ion collisions[J]. Physical Review Research, 1, 033058(2019).

    [84] Xie Y L, Bleicher M, Stöcker H et al. Λ polarization in peripheral collisions at moderately relativistic energies[J]. Physical Review C, 94, 054907(2016).

    [85] Lei A K, Wang D J, Zhou D M et al. Vorticity and Λ polarization in the microscopic transport model PACIAE[J]. Physical Review C, 104, 054903(2021).

    [86] Sheng X L, Weickgenannt N, Speranza E et al. From Kadanoff-Baym to Boltzmann equations for massive spin-1/2 fermions[J]. Physical Review D, 104, 016029(2021).

    [87] Siddique I, Liang Z T, Lisa M A et al. Alternative methods for measurement of the global polarization of Λ hyperons[J]. Chinese Physics C, 43, 014103(2019).

    [88] Niida T. Global and local polarization of Λ hyperons in Au+Au collisions at 200 GeV from STAR[J]. Nuclear Physics A, 982, 511-514(2019).

    [89] Adam J, Adamczyk L, Adams J R et al. Global polarization of Ξ and Ω hyperons in Au+Au collisions at sNN=200 GeV[J]. Physical Review Letters, 126, 162301(2021).

    [90] Abdallah M S, Aboona B E, Adam J et al. Global Lambda-hyperon polarization in Au plus Au collisions at sNN=3 GeV[J]. Physical Review C, 104, L061901(2021).

    [91] Sun Y F, Ko C M. Chiral vortical and magnetic effects in the anomalous transport model[J]. Physical Review C, 95, 034909(2017).

    [92] Sun Y F, Ko C M. Λ hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach[J]. Physical Review C, 96, 024906(2017).

    [93] Sun Y F, Ko C M. Azimuthal angle dependence of the longitudinal spin polarization in relativistic heavy ion collisions[J]. Physical Review C, 99, 011903(2019).

    [94] Xie Y L, Wang D J, Csernai L P. Global Λ polarization in high energy collisions[J]. Physical Review C, 95, 031901(2017).

    [95] Ivanov Y B, Soldatov A A. Vorticity in heavy-ion collisions at the JINR nuclotron-based ion collider facility[J]. Physical Review C, 95, 054915(2017).

    [96] Ivanov Y B, Toneev V D, Soldatov A A. Estimates of hyperon polarization in heavy-ion collisions at collision energies sNN=4-40 GeV[J]. Physical Review C, 100, 014908(2019).

    [97] Ivanov Y B, Soldatov A A. Correlation between global polarization, angular momentum, and flow in heavy-ion collisions[J]. Physical Review C, 102, 024916(2020).

    [98] Huang X G. Vorticity and spin polarization—a theoretical perspective[J]. Nuclear Physics A, 1005, 121752(2021).

    [99] Xie Y L, Chen G, Csernai L P. A study of Λ and Λ¯ polarization splitting by meson field in PICR hydrodynamic model[J]. The European Physical Journal C, 81, 12(2021).

    [100] Deng X G, Huang X G, Ma Y G. Lambda polarization in 108Ag+108Ag and 197Au+197Au collisions around a few GeV[J]. Physics Letters B, 835, 137560(2022).

    [101] Alzhrani S, Ryu S, Shen C. Λ spin polarization in event-by-event relativistic heavy-ion collisions[J]. Physical Review C, 106, 014905(2022).

    [102] Yi C, Pu S, Gao J H et al. Hydrodynamic helicity polarization in relativistic heavy ion collisions[J]. Physical Review C, 105, 044911(2022).

    [103] Li H, Xia X L, Huang X G et al. Global spin polarization of multistrange hyperons and feed-down effect in heavy-ion collisions[J]. Physics Letters B, 827, 136971(2022).

    [104] Xia X L, Li H, Huang X G et al. Feed-down effect on Λ spin polarization[J]. Physical Review C, 100, 014913(2019).

    [105] Becattini F, Buzzegoli M, Palermo A et al. Local polarization and isothermal local equilibrium in relativistic heavy ion collisions[J]. Physical Review Letters, 127, 272302(2021).

    [106] Fu B C, Liu S Y F, Pang L G et al. Shear-induced spin polarization in heavy-ion collisions[J]. Physical Review Letters, 127, 142301(2021).

    [107] Dong L H, Lin S. Dilepton helical production in a vortical quark-gluon plasma[J]. The European Physical Journal A, 58, 176(2022).

    [108] Tuchin K. Magneto-rotational dissociation of heavy hadrons in relativistic heavy-ion collisions[J]. Physics Letters B, 820, 136582(2021).

    [109] Wei M H, Islam C A, Huang M. Production rate and ellipticity of lepton pairs from a rotating hot and dense QCD medium[J]. Physical Review D, 105, 054014(2022).

    Yin JIANG, Jinfeng LIAO. Phase transitions of strong interaction matter in vorticity fields[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040011
    Download Citation