• Journal of Advanced Dielectrics
  • Vol. 12, Issue 2, 2160017 (2022)
M. V. Talanov1、*, E. V. Glazunova1, V. I. Kozlov2, S. P. Kubrin1, A. A. Bush2, V. M. Talanov3, and K. E. Kamentsev2
Author Affiliations
  • 1Research Institute of Physics, Southern Federal University, av. Stachki 193, Rostov-on-Don, 344090, Russia
  • 2Research Institute of Solid State Electronics Materials, MIREA-Russian Technological University (RTU MIREA), 5th Street of Sokolinaya Gora 22, Moscow, 119454, Russia
  • 3Technological Department, Platov South-Russian State Polytechnic University (NPI), Prosvescheniya Str. 132, Novocherkassk, 346428, Russia
  • show less
    DOI: 10.1142/S2010135X21600171 Cite this Article
    M. V. Talanov, E. V. Glazunova, V. I. Kozlov, S. P. Kubrin, A. A. Bush, V. M. Talanov, K. E. Kamentsev. Dielectric properties of bismuth-containing pyrochlores: A comparative analysis[J]. Journal of Advanced Dielectrics, 2022, 12(2): 2160017 Copy Citation Text show less
    References

    [1] M. A. Subramanian, G. Aravamudan, G. V. S. Rao. Oxide pyrochlores — A review. Prog. Solid. State Chem., 15, 55(1983).

    [2] Y. A. Pyatenko. Some aspects of the chemical crystallography of the pyrochlore-group minerals. J. Crystallogr. Acad. Sci. USSR, 4, 184(1959).

    [3] D. D. Hogarth. Classification and nomenclature of the pyrochlore group. Am. Mineral., 62, 403(1977).

    [4] M. V. Talanov, V. M. Talanov. Formation of breathing pyrochlore lattices: structural, thermodynamic and crystal chemical aspects. CrystEngComm, 22, 1176(2020).

    [5] M. V. Talanov, V. M. Talanov. Structural diversity of ordered pyrochlores. Chem. Mater., 33, 2706(2021).

    [6] J. S. Gardner, M. J. P. Gingras, J. E. Greedan. Magnetic pyrochlore oxides. Rev. Mod. Phys., 82, 53(2010).

    [7] J. G. Rau, M. J. P. Gingras. Frustrated quantum rare-earth pyrochlores. Annu. Rev. Condens. Matter Phys., 10, 357(2019).

    [8] M. Hanawa, Y. Muraoka, T. Tayama, T. Sakakibara, J. Yamaura, Z. Hiroi. Superconductivity at 1 K in Cd2Re2O7. Phys. Rev. Lett., 87, 187001(2001).

    [9] S. Yonezawa, Y. Muraoka, Z. Hiroi. New β-pyrochlore oxide superconductor CsOs2O6. J. Phys. Soc. Jpn., 73, 1655(2004).

    [10] W. R. Cook, H. Jaffe. Ferroelectricity in oxides of fluorite structure. Phys. Rev., 89, 1297(1953).

    [11] G. Laurita, D. Hickox-Young, S. Husremovic, J. Li, A. W. Sleight, R. Macaluso, J. M. Rondinelli, M. A. Subramanian. Covalency-driven structural evolution in the polar pyrochlore series Cd2Nb2O7−xSx. Chem. Mater., 31, 7626(2019).

    [12] I. A. Sergienko, V. Keppens, M. McGuire, R. Jin, J. He, S. H. Curnoe, B. C. Sales, P. Blaha, D. J. Singh, K. Schwarz, D. Mandrus. Metallic “ferroelectricity” in the pyrochlore Cd2Re2O7. Phys. Rev. Lett., 92, 065501(2004).

    [13] M. V. Talanov, V. M. Talanov. Order parameters and phase diagrams of ferroelastics with pyrochlore structure. Ferroelectrics, 543, 1(2019).

    [14] H. C. Wu, J. K. Yuan, K. D. Chandrasekhar, C. H. Lee, W. H. Li, C. W. Wang, J. M. Chen, J. Y. Lin, H. Berger, T. W. Yen, S. M. Huang, C. W. Chu, H. D. Yang. Observation of charge-transfer-driven antiferroelectricity in 3d-pyrochlore multiferroic Cu2OCl2. Mater. Today Phys., 8, 34(2019).

    [15] H. Y. Playford, D. R. Modeshia, E. R. Barney, A. C. Hannon, C. S. Wright, J. M. Fisher, A. Amieiro-Fonseca, D. Thompsett, L. A. O’Dell, G. J. Rees, M. E. Smith, J. V. Hanna, R. I. Walton. Structural characterization and redox catalytic properties of cerium(IV) pyrochlore oxides. Chem. Mater., 23, 5464(2011).

    [16] B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. E. Yeo, S. M. Haile, J. K. Stalick, J. D. Jorgensen. Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid State Ion., 129, 111(2000).

    [17] R. C. Ewing, W. J. Weber, J. Lian. Nuclear waste disposal-pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys., 95, 5949(2004).

    [18] X. Jing, B. Huang, X. Yang, J. Wei, Z. Wang, P. Wang, L. Zheng, Z. Xu, H. Liu, X. Wang. Growth and electrical properties of Ce-doped Bi2Ti2O7 thin films by chemical solution deposition. Appl. Surf. Sci., 255, 2651(2008).

    [19] G. W. Hwang, W. D. Kim, Y.-S. Min, Y. J. Cho, C. S. Hwang. Characteristics of amorphous Bi2Ti2O7 thin films grown by atomic layer deposition for memory capacitor applications. J. Electrochem. Soc., 153, F20(2006).

    [20] R. L. Thayer, C. A. Randall, S. Trolier-McKinstry. Medium permittivity bismuth zinc niobate thin film capacitors. J. Appl. Phys., 94, 1941(2003).

    [21] A. W. Sleight. New ternary oxides of mercury with the pyrochlore structure. Inorg. Chem., 7, 1704(1968).

    [22] I. Levin, T. G. Amos, J. C. Nino, T. A. Vanderah, C. A. Randall, M. T. Lanagan. Structural study of an unusual cubic pyrochlore Bi1.5Zn0.92Nb1.5O6.92. J. Solid State Chem., 168, 69(2002).

    [23] M. Avdeev, M. K. Haas, J. D. Jorgensen, R. J. Cava. Static disorder from lone-pair electrons in Bi2−xMxRu2O7−y (M = Cu; Co; x = 0; 0:4) pyrochlores. J. Solid State Chem., 169, 24(2002).

    [24] A. L. Hector, S. B. Wiggin. Synthesis and structural study of stoichiometric Bi2Ti2O7 pyrochlore. J. Solid State Chem., 177, 139(2004).

    [25] V. Krayzman, I. Levin, J. C. Woicik. Local structure of displacively disordered pyrochlore dielectrics. Chem. Mater., 19, 932(2007).

    [26] J. C. Nino, M. T. Lanagan, C. A. Randall, S. Kamba. Correlation between infrared phonon modes and dielectric relaxation in Bi2O3-ZnO-Nb2O5 cubic pyrochlore. Appl. Phys. Lett., 81, 4404(2002).

    [27] S. Kamba, V. Porokhonskyy, A. Pashkin, V. Bovtun, J. Petzelt, J. C. Nino, S. Trolier-McKinstry, M. T. Lanagan, C. A. Randall. Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore. Phys. Rev. B: Condens. Matter Mater. Phys., 66, 054106(2002).

    [28] S. P. Yordanov, I. Ivanov, Ch. P. Carapanov. Dielectric properties of the ferroelectric Bi2Ti2O7 ceramics. J. Phys. D: Appl. Phys., 31, 800(1998).

    [29] R. Seshadri. Lone pairs in insulating pyrochlores: Ice rules and high-k behavior. Solid State Sci., 8, 259(2006).

    [30] B. C. Melot, R. Tackett, J. O’Brien, A. L. Hector, G. Lawes, R. Seshadri, A. P. Ramirez. Large low-temperature specific heat in pyrochlore Bi2Ti2O7. Phys. Rev. B: Condens. Matter Mater. Phys., 79, 224111(2009).

    [31] B. A. Trump, S. M. Koohpayeh, K. J. T. Livi, J.-J. Wen, K. E. Arpino, Q. M. Ramasse, R. Brydson, M. Feygenson, H. Takeda, M. Takigawa, K. Kimura, S. Nakatsuji, C. L. Broholm, T. M. McQueen. Universal geometric frustration in pyrochlores. Nat. Commun., 9, 2619(2018).

    [32] A. A. Bush, M. V. Talanov, A. I. Stash, S. A. Ivanov, K. E. Kamentsev. Relaxor-like behavior and structure features of Bi2Ti2O7 pyrochlore single crystals. Cryst. Growth Des., 20, 824(2020).

    [33] B. B. Hinojosa, A. Asthagiri, J. C. Nino. Capturing dynamic cation hopping in cubic pyrochlores. Appl. Phys. Lett., 99, 082903(2011).

    [34] B. B. Hinojosa, A. Asthagiri, J. C. Nino. Energy landscape in frustrated systems: Cation hopping in pyrochlores. Appl. Phys. Lett., 103, 022901(2013).

    [35] C. G. Turner, J. R. Esquivel-Elizondo, J. C. Nino. Dielectric properties and relaxation of Bi2Ti2O7. J. Am. Ceram. Soc., 97, 1763(2014).

    [36] J. R. Esquivel-Elizondo, B. B. Hinojosa, J. C. Nino. Bi2Ti2O7: It is not what you have read. Chem. Mater., 23, 4965(2011).

    [37] A. A. Bush, M. V. Talanov, A. I. Stash, S. A. Ivanov, K. E. Kamentsev. Dielectric relaxation in Bi2Ti2O7 single crystals. Ferroelectrics, 553, 60(2019).

    [38] D. Viehland, S. J. Jang, L. E. Cross. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys., 68, 2916(1990).

    [39] Y.-H. Bing, A. A. Bokov, Z.-G. Ye. Diffuse and sharp ferroelectric phase transitions in relaxors. Curr. Appl. Phys., 11, S14(2011).

    [40] F. Chu, I. M. Reaney, N. Setter. Investigation of relaxors that transform spontaneously into ferroelectrics. Ferroelectrics, 151, 343(1994).

    [41] A. A. Bokov, Z.-G. Ye. Low-frequency dielectric spectroscopy of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3−PbTiO3. Phys. Rev. B, 65, 144112(2002).

    [42] M. V. Talanov, A. A. Bush, K. E. Kamentsev, V. P. Sirotinkin, A. G. Segalla. Structure-property relationships in BiScO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics near the morphotropic phase boundary. J. Am. Ceram Soc., 101, 683(2018).

    [43] M. V. Talanov, L. A. Reznichenko. Phase diagrams of solid solutions of relaxor ferroelectrics from the dielectric spectroscopy data. Phys. Sol. State, 60, 437(2018).

    [44] H. Ogihara, C. A. Randall, S. Trolier-McKinstry. Weakly coupled relaxor behavior of BaTiO3-BiScO3 Ceramics. J. Am. Ceram. Soc., 92, 110(2009).

    [45] A. A. Bokov, M. A. Leshchenko, M. A. Malitskaya, I. P. Raevski. Dielectric spectra and Vogel-Fulcher scaling in Pb(In0.5Nb0.5)O3 relaxor ferroelectric. J. Phys.: Condens. Matter, 11, 4899(1999).

    [46] I. P. Raevski, V. V. Titov, H. Chen, I. N. Zakharchenko, S. I. Raevskaya, S. I. Shevtsova. Evolution of dielectric properties in the (1-x)PbFe0.5Nb0.5O3−xBaFe0.5Nb0.5O3 solid solution system. J. Matter. Sci., 54, 10984(2019).

    [47] T. Maiti, R. Guo, A. S. Bhalla. Structure-property phase diagram of BaZrxTi1−xO3 system. J. Am. Ceram Soc., 91, 1769(2008).

    [48] N. de Mathan, E. Husson, J. R. Gavarri, A. W. Heiwat, A. A. Morell. A structural model for the relaxor PbMg1/3Nb2/3O3 at 5 K. J. Phys.: Condens. Matter, 3, 8159(1991).

    [49] X. Zhao, W. Qu, X. Tan, A. A. Bokov, Z.-G. Ye. Electric field-induced phase transitions in (111)-, (110)-, and (100)-oriented Pb(Mg1/3Nb2/3)O3 single crystals. Phys. Rev. B, 75, 104106(2007).

    [50] I. P. Raevski, S. A. Prosandeev, A. S. Emelyanov, S. I. Raevskaya, Eugene V. Colla, D. Viehland, W. Kleemann, S. B. Vakhrushev, J.-L. Dellis, M. El Marssi, L. Jastrabik. Bias-field effect on the temperature anomalies of dielectric permittivity in PbMg1/3Nb2/3O3−PbTiO3 single crystals. Phys. Rev. B, 72, 184104(2005).

    [51] Z. Kutnjak, J. Petzelt, R. Blinc. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature, 441, 956(2006).

    [52] K. Binder, A. P. Young. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys., 58, 801(1986).

    [53] D. P. Shoemaker, R. Seshadri, A. L. Hector, A. Llobet, T. Proffen, C. J. Fennie. Atomic displacements in the charge ice pyrochlore Bi2Ti2O6O’studied by neutron total scattering. Phys. Rev. B: Condens. Matter Mater. Phys., 81, 144113(2010).

    [54] D. P. Shoemaker, R. Seshadri, M. Tachibana, A. L. Hector. Incoherent Bi off-centering in Bi2Ti2O6O′ and Bi2Ru2O6O′: Insulator versus metal. Phys. Rev. B: Condens. Matter Mater. Phys., 84, 064117(2011).

    [55] B. B. Hinojosa, J. C. Nino, A. Asthagiri. First-principles study of cubic Bi pyrochlores. Phys. Rev. B: Condens. Matter Mater. Phys., 77, 104123(2008).

    [56] D. Phelan, C. Stock, J. A. Rodriguez-Rivera, S. Chi, J. Leão, X. Long, Y. Xie, A. A. Bokov, Z.-.G. Ye, P. Ganesh, P. M. Gehring. Role of random electric fields in relaxors. Proc. Natl Acad. Sci. USA, 111, 1754(2014).

    [57] W. Kleemann. Relaxor ferroelectrics: Cluster glass ground state via random fields and random bonds. Phys. Status Solidi B, 251, 1993(2014).

    [58] M. V. Talanov, A. A. Bokov, M. A. Marakhovsky. Effects of crystal chemistry and local random fields on relaxor and piezoelectric behavior of lead-oxide perovskites. Acta Mater., 193, 40(2020).

    [59] J. R. Arce-Gamboa, G. G. Guzmán-Verri. Random electric field instabilities of relaxor ferroelectrics. NPJ Quantum Mater., 2, 28(2017).

    M. V. Talanov, E. V. Glazunova, V. I. Kozlov, S. P. Kubrin, A. A. Bush, V. M. Talanov, K. E. Kamentsev. Dielectric properties of bismuth-containing pyrochlores: A comparative analysis[J]. Journal of Advanced Dielectrics, 2022, 12(2): 2160017
    Download Citation