• Chinese Journal of Lasers
  • Vol. 45, Issue 5, 502001 (2018)
Jiao Shikun1、2、3、4、5, Liu Shaoyin1、2、3、4、5, Liu Dong1、2、3、4、5, and Cheng Xu1、2、3、4、5、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: 10.3788/cjl201845.0502001 Cite this Article Set citation alerts
    Jiao Shikun, Liu Shaoyin, Liu Dong, Cheng Xu. Heat Treatment Microstructures and TB Phase Precipitation of Laser Additive Manufactured Al-Li Alloys[J]. Chinese Journal of Lasers, 2018, 45(5): 502001 Copy Citation Text show less
    References

    [1] Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical & Materials Transactions A, 2012, 43A(9): 3325-3337.

    [2] Li J F, Zheng Z Q, Chen Y L. et al. Al-Li alloys and their application in aerospace Sindustry[J]. Aerospace Materials & Technology, 2012, (1): 13-19.

    [3] Yang W X, Zhang X Y, Xiao R S. Dual-beam laser welding of T-joint of aluminum-lithium alloy 2060-T8/2099-T83[J]. Chinese Journal of Lasers, 2013, 40(7): 0703001.

    [4] Sun J Q, Zhang B Z. Al-Li alloy properties and applications on the commercial aircraft[J]. Advances in Aeronautical Science and Engineering, 2013, 4(2): 158-163.

    [5] Xiong H. Cryogenic tank and applicatoin of aluminium-lithium alloy[J]. Missiles and Space Vehicles, 2001(6): 33-40.

    [6] He J W, Wang Z T. Recovery and recycle of Al-Li alloy scraps[J]. Light Alloy Fabrication Technology, 2015(7): 18-21.

    [7] Li J F, Zheng Z Q, Chen Y L. Al-Li alloys and their application in aerospace industry[J]. Aerospace Materials & Technology, 2012, 42(1): 13-19.

    [8] Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477.

    [9] Nayan N, Murty S V S N, Jha A K, et al. Processing and characterization of Al-Cu-Li alloy AA22195 undergoing scale up production through the vacuum induction melting technique[J]. Materials Science and Engineering A, 2013, 576: 21-28.

    [10] Wang H M. Materials′ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698.

    [11] Kobryn P A, Semiatin S L. The laser additive manufacture of Ti-6Al-4V[J]. JOM, 2001, 53(9): 40-42.

    [12] Wang H M, Zhang S Q, Wang X M. Progress and challenges of laser direct manufacturing of large titanium structural components (invited paper)[J]. Chinese Journal of Lasers, 2009, 36(12): 3204-3209.

    [13] Wang J W, Chen J, Liu Y H, et al. Research on microstructure of TC17 titanium alloy fabricated by laser solid forming[J]. Chinese Journal of Lasers, 2010, 37(3): 847-851.

    [14] Wang Z H, Wang H M, Liu D. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique[J]. Chinese Journal of Lasers, 2016, 43(4): 0403001.

    [15] Jiang H, Tang H B, Fang Y L, et al. Microstructure and mechanical properties of rapid solidified ultra-fine columnar grain Ni-base superalloy DZ408 by laser melting deposition manufacturing[J]. Chinese Journal of Lasers, 2012, 39(2): 0203004.

    [16] Fan Z, Tao X Y, Fan X D, et al. Nanotube fountain pen: Towards 3D manufacturing of metallic nanostructures[J]. Carbon, 2015, 86: 280-287.

    [17] Ovri H, Jgle E A, Stark A, et al. Microstructural influences on strengthening in a naturally aged and overaged Al-Cu-Li-Mg based alloy[J]. Materials Science and Engineering A, 2015, 637: 162-169.

    [18] American Society for Testing and Materials. Standard test method for knoop and vickers hardness of materials[S]. Berkeley: University of California, 2010.

    [19] Gupta R K, Nayan N, Nagasireesha G, et al. Development and characterization of Al-Li alloys[J]. Materials Science and Engineering A, 2006, 420(1/2): 228-234.

    [20] Qiao Y. Study on solid phase transformation and microstructure evolution of X2A66 Al-Li alloy[D]. Beijing: Beijing University of Technology, 2016.

    [21] Fu B L, Qin G L, Meng X M, et al. Microstructure and mechanical properties of newly developed aluminum-lithium alloy 2A97 welded by fiber laser[J]. Materials Science and Engineering A, 2014, 617: 1-11.

    [22] Zhang X Y, Huang T, Yang W X, et al. Microstructure and mechanical properties of laser beam-welded AA2060 Al-Li alloy[J]. Journal of Materials Processing Technology, 2016, 237: 301-308.

    [23] Hou K H, Baeslack W A. Effect of solute segregation on the weld fusion zone microstructure in CO2 laser beam and gas tungsten arc welds in Al-Li-Cu alloy 2195[J]. Journal of Materials Science Letters, 1996, 15(3): 208-213.

    [24] Liu C M, Jiang S N, Chen Z Y, et al. Aluminum alloy phase atlas[M]. Changsha: Central South University Press, 2014.

    [25] Yoshimura R, Konno T J, Abe E, et al. Transmission electron microscopy study of the evolution of precipitates in aged Al-Li-Cu alloys: The θ′ and T1 phases[J]. Acta Materialia, 2003, 51(14): 4251-4266.

    Jiao Shikun, Liu Shaoyin, Liu Dong, Cheng Xu. Heat Treatment Microstructures and TB Phase Precipitation of Laser Additive Manufactured Al-Li Alloys[J]. Chinese Journal of Lasers, 2018, 45(5): 502001
    Download Citation