• Acta Geographica Sinica
  • Vol. 75, Issue 1, 82 (2020)
Keke FAN1、1、2、2、3、3, Qiang ZHANG1、1、2、2、3、3, Peng SUN4、4, Changqing SONG1、1、2、2、3、3, Huiqian YU1、1、2、2、3、3, Xiudi ZHU1、1、2、2、3、3, and Zexi SHEN1、1、2、2、3、3
Author Affiliations
  • 1Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China
  • 1北京师范大学环境演变与自然灾害教育部重点实验室,北京 100875
  • 2Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China
  • 2北京师范大学减灾与应急管理研究院,北京 100875
  • 3Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
  • 3北京师范大学地理科学学部,北京 100875
  • 4College of Geography and Tourism, Anhui Normal University, Wuhu 241002, Anhui, China
  • 4安徽师范大学国土资源与旅游学院,芜湖 241002
  • show less
    DOI: 10.11821/dlxb202001007 Cite this Article
    Keke FAN, Qiang ZHANG, Peng SUN, Changqing SONG, Huiqian YU, Xiudi ZHU, Zexi SHEN. Effect of soil moisture variation on near-surface air temperature over the Tibetan Plateau[J]. Acta Geographica Sinica, 2020, 75(1): 82 Copy Citation Text show less
    References

    [1] Schwingshackl C, Hirschi M, Seneviratne S I. Quantifying spatiotemporal variations of soil moisture control on surface energy balance and near-surface air temperature[J]. Journal of Climate, 30, 7105-7124(2017).

    [2] Dirmeyer P A. The terrestrial segment of soil moisture-climate coupling[J]. Geophysical Research Letters, 38(2011).

    [4] Climate Research Committee, National Research Council. GOALS (Global Ocean-Atmosphere-Land System) for Predicting Seasonal-to-Interannual Climate: A Program of Observation, Modeling, and Analysis(1994).

    [5] Koster R D, Dirmeyer P A, Guo Z et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 305, 1138-1140(2004).

    [6] Seneviratne S I, Luthi D, Litschi M et al. Land-atmosphere coupling and climate change in Europe[J]. Nature, 443, 205-209(2006).

    [7] Orth R, Seneviratne S I. Variability of soil moisture and sea surface temperatures similarly important for warm-season land climate in the Community Earth System Model[J]. Journal of Climate, 30, 2141-2162(2017).

    [8] Seneviratne S I, Corti T, Davin E L et al. Investigating soil moisture-climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 99, 125-161(2010).

    [9] Koster R D, Guo Z, Dirmeyer P A et al. GLACE: The global land-atmosphere coupling experiment. Part I: Overview[J]. Journal of Hydrometeorology, 7, 590-610(2006).

    [10] Koster R D, Mahanama S P P, Yamada T J et al. The second phase of the global land-atmosphere coupling experiment: Soil moisture contributions to subseasonal forecast skill[J]. Journal of Hydrometeorology, 12, 805-822(2011).

    [11] Chahine M T. The hydrological cycle and its influence on climate[J]. Nature, 359, 373-380(1992).

    [12] Wu L, Zhang J. Asymmetric effects of soil moisture on mean daily maximum and minimum temperatures over eastern China[J]. Meteorology and Atmospheric Physics, 122, 199-213(2013).

    [13] Santanello J J A, Peters-Lidard C D, Kumar S V et al. A modeling and observational framework for diagnosing local land-atmosphere coupling on diurnal time scales[J]. Journal of Hydrometeorology, 10, 577-599(2009).

    [14] Lorenz R, Jaeger E B, Seneviratne S I. Persistence of heat waves and its link to soil moisture memory[J]. Geophysical Research Letters, 37, 384-397(2010).

    [15] Zampieri M, D'Andrea F, Vautard R et al. Hot European summers and the role of soil moisture in the propagation of mediterranean drought[J]. Journal of Climate, 22, 4747-4758(2009).

    [16] Hirschi M, Seneviratne S I, Alexandrov V et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe[J]. Nature Geoscience, 4, 17-21(2011).

    [17] Mueller B, Seneviratne S I. Hot days induced by precipitation deficits at the global scale[C]. Proceedings of The National Academy of Sciences, 109, 12398-12403(2012).

    [18] Ruosteenoja K, Markkanen T, Venäläinen A et al. Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century[J]. Climate Dynamics, 50, 1177-1192(2018).

    [19] Hauser M, Orth R, Seneviratne S I. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia[J]. Geophysical Research Letters, 43, 2819-2826(2016).

    [20] Seneviratne S I, Wilhelm M, Stanelle T et al. Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment[J]. Geophysical Research Letters, 40, 5212-5217(2013).

    [21] Seneviratne S I, Donat M G, Pitman A J et al. Allowable CO2 emissions based on regional and impact-related climate targets[J]. Nature, 529, 477-483(2016).

    [22] Douville H, Colin J, Krug E et al. Midlatitude daily summer temperatures reshaped by soil moisture under climate change[J]. Geophysical Research Letters, 43, 812-818(2016).

    [23] Lorenz R, Argueeso D, Donat M G et al. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble[J]. Journal of Geophysical Research: Atmospheres, 121, 607-623(2016).

    [24] Gallego-Elvira B, Taylor C M, Harris P P et al. Global observational diagnosis of soil moisture control on the land surface energy balance[J]. Geophysical Research Letters, 43, 2623-2631(2016).

    [25] Miralles D G, Teuling A J, Van Heerwaarden C C et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation[J]. Nature Geoscience, 7, 345-349(2014).

    [26] Dirmeyer P A. Trends in land-atmosphere interactions from CMIP5 simulations[J]. Journal of Hydrometeorology, 14, 829-849(2013).

    [27] Badgley G, Fisher J B, Carlos Jiménez et al. On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets[J]. Journal of Hydrometeorology, 16, 1449-1455(2015).

    [28] Mueller B, Seneviratne S I. Systematic land climate and evapotranspiration biases in CMIP5 simulations[J]. Geophysical Research Letters, 41, 128-134(2014).

    [30] Zeng J, Li Z, Chen Q et al. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations[J]. Remote Sensing of Environment, 163, 91-110(2015).

    [31] Bi H, Ma J, Zheng W et al. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research-Atmospheres, 121, 2658-2678(2016).

    [37] Bao X, Zhang F. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J]. Journal of Climate, 26, 206-214(2013).

    [38] Hodges K I, Lee R W, Bengtsson L. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25[J]. Journal of Climate., 24, 4888-4906(2011).

    [39] Saha S, Moorthi S, Pan H et al. The NCEP climate forecast system reanalysis[J]. Bulletin of the American Meteorological Society, 91, 1015-1057(2010).

    [42] Koster R D, Schubert S D, Suarez M J. Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime[J]. Journal of Climate, 22, 3331-3341(2009).

    Keke FAN, Qiang ZHANG, Peng SUN, Changqing SONG, Huiqian YU, Xiudi ZHU, Zexi SHEN. Effect of soil moisture variation on near-surface air temperature over the Tibetan Plateau[J]. Acta Geographica Sinica, 2020, 75(1): 82
    Download Citation