[1] H A ATWATER, A POLMAN. Plasmonics for improved photovoltaic devices. Nature Materials, 9, 205-213(2010).
[2] M C FU, F W GLOVER, J APRIL. In simulation optimization: A review, new developments, and applications, 83-95(2005).
[3] S LIU, K ZHANG, S CAO et al. In design and optimization of terahertz bandpass filter based on SiC substrate, 205-207(2021).
[4] G A KRAFTMAKHER, V S BUTYLKIN. A composite medium with simultaneously negative permittivity and permeability. Technical Physics Letters, 29, 230-232(2003).
[5] K YAMAZOE, I MOCHI, K A GOLDBERG. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source. Journal of the Optical Society of America a-Optics Image Science and Vision, 31, B34-B43(2014).
[6] P I BOREL, A HARPOTH, L H FRANDSEN et al. Topology optimization and fabrication of photonic crystal structures. Optics Express, 12, 1996-2001(2004).
[7] R MATZEN, J S JENSEN, O SIGMUND. Topology optimization for transient response of photonic crystal structures. Journal of the Optical Society of America B-Optical Physics, 27, 2040-2050(2010).
[8] J RIISHEDE, O SIGMUND. Inverse design of dispersion compensating optical fiber using topology optimization. Journal of the Optical Society of America B-Optical Physics, 25, 88-97(2008).
[9] Y ELESIN, B S LAZAROV, J S JENSEN et al. Design of robust and efficient photonic switches using topology optimization. Photonics and Nanostructures-Fundamentals and Applications, 10, 153-165(2012).
[10] Z MICHALEWICZ, M MICHALEWICZ. Evolutionary computation techniques and their applications, 14-25(1997).
[11] D S WANG, D P TAN, L LIU. Particle swarm optimization algorithm: an overview. Soft Computing, 22, 387-408(2018).
[12] S S AN, C FOWLER, B W ZHENG et al. A deep learning approach for objective-driven all-dielectric metasurface design. Acs Photonics, 6, 3196-3207(2019).
[13] D J LIU, Y X TAN, E KHORAM et al. Training deep neural networks for the inverse design of nanophotonic structures. Acs Photonics, 5, 1365-1369(2018).
[14] S KIM, J M SHIN, J LEE et al. Inverse design of organic light-emitting diode structure based on deep neural networks. Nanophotonics, 10, 4533-4541(2021).
[15] Y ELESIN, B S LAZAROV, J S JENSEN et al. Time domain topology optimization of 3D nanophotonic devices. Photonics and Nanostructures-Fundamentals and Applications, 12, 23-33(2014).
[16] D C KIM, A HERMERSCHMIDT, P DYACHENKO et al. Inverse design and demonstration of high-performance wide-angle diffractive optical elements. Optics Express, 28, 22321-22333(2020).
[17] L SU, R TRIVEDI, N V SAPRA et al. Fully-automated optimization of grating couplers. Optics Express, 26, 4023-4034(2018).
[18] F CALLEWAERT, V VELEV, P KUMAR et al. Inverse-designed broadband all-dielectric electromagnetic metadevices. Scientific Reports, 8, 8(2018).
[19] Y TAKAHASHI, Y INUI, M CHIHARA et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature, 498, 470-474(2013).
[20] R HALIR, Y OKAWACHI, J S LEVY et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Optics Letters, 37, 1685-1687(2012).
[21] C E RUTER, K G MAKRIS, R EL-GANAINY et al. Observation of parity-time symmetry in optics. Nature Physics, 6, 192-195(2010).
[22] B ZHEN, C W HSU, Y IGARASHI et al. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).
[23] W K LEE, S C YU, C J ENGEL et al. Concurrent design of quasi-random photonic nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 114, 8734-8739(2017).
[24] G KIM, J A DOMINGUEZ-CABALLERO, H LEE et al. Increased photovoltaic power output via diffractive spectrum separation. Physical Review Letters, 110, 5(2013).
[25] A Y PIGGOTT, J LU, K G LAGOUDAKIS et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nature Photonics, 9, 374-377(2015).
[26] B SHEN, P WANG, R POLSON et al. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm(2) footprint. Nature Photonics, 9, 378-382(2015).
[27] X H SHI, Y C LIANG, H P LEE et al. An improved GA and a novel PSO-GA-based hybrid algorithm. Information Processing Letters, 93, 255-261(2005).
[28] H J CHUNG, O D MILLER. Tunable metasurface inverse design for 80% switching efficiencies and 144 degrees angular deflection. Acs Photonics, 7, 2236-2243(2020).
[29] C M LALAU-KERALY, S BHARGAVA, O D MILLER et al. Adjoint shape optimization applied to electromagnetic design. Optics Express, 21, 21693-21701(2013).
[30] S SO, T BADLOE, J NOH et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041-1057(2020).
[31] A Y PIGGOTT, J PETYKIEWICZ, L G SU et al. Fabrication-constrained nanophotonic inverse design. Scientific Reports, 7, 7(2017).
[32] A MCNAMARA, A TREUILLE, Z POPOVIC et al. Fluid control using the adjoint method. Acm Transactions on Graphics, 23, 449-456(2004).
[33] S W DIRECTOR, R A ROHRER. Generalized adjoint network and network sensitivities. IEEE Transactions on Circuit Theory, 16, 318-323(1969).
[34] H CHUNG, O D MILLER. High-NA achromatic metalenses by inverse design. Optics Express, 28, 6945-6965(2020).
[35] L SU, A Y PIGGOTT, N V SAPRA et al. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. Acs Photonics, 5, 301-305(2018).
[36] M ZHOU, D J LIU, S W BELLING et al. Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization. Acs Photonics, 8, 2265-2273(2021).
[37] D SELL, J J YANG, S DOSHAY et al. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Letters, 17, 3752-3757(2017).
[38] M MANSOUREE, H KWON, E ARBABI et al. Multifunctional 2.5D metastructures enabled by adjoint optimization. Optica, 7, 77-84(2020).
[39] O SIGMUND, J S JENSEN. Systematic design of phononic band-gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 361, 1001-1019(2003).
[40] L HARZHEIM, G GRAF. A review of optimization of cast parts using topology optimization-Ⅱ-Topology optimization with manufacturing constraints. Structural and Multidisciplinary Optimization, 31, 388-399(2006).
[41] M PAPADRAKAKIS, Y TSOMPANAKIS, N D LAGAROS. Structural shape optimization using evolution strategies. Engineering Optimization, 31, 515-540(1999).
[42] G ALLAIRE, C DAPOGNY, F JOUVE. Shape and topology optimization, 22, 1-132(2021).
[43] J PETERSSON, O SIGMUND. Slope constrained topology optimization. International Journal for Numerical Methods in Engineering, 41, 1417-1434(1998).
[44] M P BENDSØE, N KIKUCHI. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71, 197-224(1988).
[45] M P BENDSOE, J GUEDES, R B HABER et al. An analytical model to predict optimal material properties in the context of optimal structural design. Journal of Applied Mechanics, 61, 930-937(1994).
[46] M KOCVARA, M STINGL, J ZOWE. Free material optimization: recent progress. Optimization, 57, 79-100(2008).
[47] M P BENDSØE. Optimal shape design as a material distribution problem. Structural Optimization, 1, 193-202(1989).
[48] M ZHOU, G ROZVANY. The COC algorithm, Part Ⅱ: Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89, 309-336(1991).
[49] H P MLEJNEK. Some aspects of the genesis of structures. Structural Optimization, 5, 64-69(1992).
[50] M P BENDSOE, O SIGMUND. Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 69, 635-654(1999).
[51] A DIAZ, O SIGMUND. Checkerboard patterns in layout optimization. Structural Optimization, 10, 40-45(1995).
[52] O SIGMUND. On the design of compliant mechanisms using topology optimization. Mechanics of Structures and Machines, 25, 493-524(1997).
[53] J K GUEST, J H PREVOST, T BELYTSCHKO. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61, 238-254(2004).
[54] O SIGMUND. Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, 33, 401-424(2007).
[55] S XU, Y CAI, G CHENG. Volume preserving nonlinear density filter based on heaviside functions. Structural and Multidisciplinary Optimization, 41, 495-505(2010).
[56] O SIGMUND. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21, 120-127(2001).
[57] E ANDREASSEN, A CLAUSEN, M SCHEVENELS et al. Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 43, 1-16(2011).
[58] K SVANBERG. The method of moving asymptotes - a new method for structural optimization. International Journal for Numerical Methods in Engineering, 24, 359-373(1987).
[59] J S JENSEN, O SIGMUND. Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends. Applied Physics Letters, 84, 2022-2024(2004).
[60] C Y KAO, S OSHER, E YABLONOVITCH. Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Applied Physics B-Lasers and Optics, 81, 235-244(2005).
[61] M BURGER. A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces and Free Boundaries, 5, 301-329(2003).
[62] M BURGER, S J OSHER, E YABLONOVITCH. Inverse problem techniques for the design of photonic crystals. Ieice Transactions on Electronics, E87C, 258-265(2004).
[63] D VERCRUYSSE, N V SAPRA, L SU et al. Analytical level set fabrication constraints for inverse design. Scientific Reports, 9, 8999(2019).
[64] J PEURIFOY, Y C SHEN, L JING et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Science Advances, 4, 7(2018).
[65] W MA, F CHENG, Y M LIU. Deep-learning-enabled on-demand design of chiral metamaterials. Acs Nano, 12, 6326-6334(2018).
[66] A P BLANCHARD-DIONNE, O J F MARTIN. Teaching optics to a machine learning network. Optics Letters, 45, 2922-2925(2020).
[67] I MALKIEL, M MREJEN, A NAGLER et al. Plasmonic nanostructure design and characterization via deep learning. Light-Science & Applications, 7, 8(2018).
[68] J POUGET-ABADIE, M MIRZA, B XU et al. Generative adversarial nets. Advances in Neural Information Processing Systems, 63, 139-144(2020).
[69] Y HAN, S XIANG, Y ZHANG et al. An all-MRR-based photonic spiking neural network for spike sequence learning. Photonics, 9, 120(2022).
[70] S S AN, B W ZHENG, H TANG et al. Multifunctional metasurface design with a generative adversarial network. Advanced Optical Materials, 9, 10(2021).
[72] D P KINGMA, M WELLING. Auto-encoding variational bayes(2013).
[73] W MA, F CHENG, Y H XU et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Advanced Materials, 31, 9(2019).
[74] L LU, J D JOANNOPOULOS, M SOLJAČIĆ. Topological states in photonic systems. Nature Physics, 12, 626-629(2016).
[75] B Y XIE, H F WANG, X Y ZHU et al. Photonics meets topology. Optics Express, 26, 24531-24550(2018).
[76] W ZHU, Y Q DING, J REN et al. Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials. Physical Review B, 97, 195307(2018).
[77] B PENG, Ş K ÖZDEMIR, F LEI et al. Parity-time-symmetric whispering-gallery microcavities. Nature Physics, 10, 394-398(2014).
[78] C E RÜTER, K G MAKRIS, R EL-GANAINY et al. Observation of parity-time symmetry in optics. Nature Physics, 6, 192-195(2010).
[79] R E CHRISTIANSEN, F WANG, O SIGMUND. Topological insulators by topology optimization. Physical Review Letters, 122, 234502(2019).
[80] R E CHRISTIANSEN, F WANG, O SIGMUND et al. Designing photonic topological insulators with quantum-spin-Hall edge states using topology optimization. Nanophotonics, 8, 1363-1369(2019).
[81] S BARIK, H MIYAKE, W DEGOTTARDI et al. Two-dimensionally confined topological edge states in photonic crystals. New Journal of Physics, 18, 113013(2016).
[82] E SAUER, J P VASCO, S HUGHES. Theory of intrinsic propagation losses in topological edge states of planar photonic crystals. Physical Review Research, 2, 043109(2020).
[83] A REGENSBURGER, C BERSCH, M-AMIRI et al. Parity-time synthetic photonic lattices. Nature, 488, 167-171(2012).
[84] A PICK, Z LIN, W JIN et al. Enhanced nonlinear frequency conversion and Purcell enhancement at exceptional points. Physical Review B, 96, 224303(2017).
[85] B ZHEN, C W HSU, Y IGARASHI et al. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).
[86] S MOLESKY, Z LIN, A Y PIGGOTT et al. Inverse design in nanophotonics. Nature Photonics, 12, 659-670(2018).
[87] S NANTHAKUMAR, X ZHUANG, H S PARK et al. Inverse design of quantum spin hall-based phononic topological insulators. Journal of the Mechanics and Physics of Solids, 125, 550-571(2019).
[88] J LUO, Z DU, C LIU et al. Moving Morphable Components-based inverse design formulation for quantum valley/spin hall insulators. Extreme Mechanics Letters, 45, 101276(2021).
[89] L HE, Z WEN, Y JIN et al. Inverse design of topological metaplates for flexural waves with machine learning. Materials & Design, 199, 109390(2021).
[90] Z LIN, X LIANG, M LONČAR et al. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica, 3, 233-238(2016).
[91] Z HAO, L ZHANG, W MAO et al. Second-harmonic generation using d 33 in periodically poled lithium niobate microdisk resonators. Photonics Research, 8, 311-317(2020).
[92] Z F BI, A W RODRIGUEZ, H HASHEMI et al. High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators. Optics Express, 20, 7526-7543(2012).
[93] J B KHURGIN. How to deal with the loss in plasmonics and metamaterials. Nature Nanotechnology, 10, 2-6(2015).
[94] Z LIN, M LONČAR, A W RODRIGUEZ. Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion. Optics Letters, 42, 2818-2821(2017).
[95] S A MANN, H GOH, A ALÙ. Inverse design of nonlinear polaritonic metasurfaces for second harmonic generation. Acs Photonics, 10, 993-1000(2023).
[96] R E CHRISTIANSEN, J MICHON, M BENZAOUIA et al. Inverse design of nanoparticles for enhanced Raman scattering. Optics Express, 28, 4444-4462(2020).
[97] Z LI, R PESTOURIE, Z LIN et al. Empowering metasurfaces with inverse design: principles and applications. Acs Photonics, 9, 2178-2192(2022).
[98] A ZHAN, R GIBSON, J WHITEHEAD et al. Controlling three-dimensional optical fields via inverse Mie scattering. Science Advances, 5, eaax4769(2019).
[99] T PHAN, D SELL, E W WANG et al. High-efficiency, large-area, topology-optimized metasurfaces. Light: Science & Applications, 8, 48(2019).
[100] E BAYATI, R PESTOURIE, S COLBURN et al. Inverse designed metalenses with extended depth of focus. Acs Photonics, 7, 873-878(2020).
[101] A S BACKER. Computational inverse design for cascaded systems of metasurface optics. Optics Express, 27, 30308-30331(2019).
[102] I SAJEDIAN, T BADLOE, J RHO. Optimisation of colour generation from dielectric nanostructures using reinforcement learning. Optics Express, 27, 5874-5883(2019).
[103] H CHUNG, O D MILLER. Tunable metasurface inverse design for 80% switching efficiencies and 144 angular deflection. Acs Photonics, 7, 2236-2243(2020).
[104] S S PANDA, H S VYAS, R S HEGDE. Robust inverse design of all-dielectric metasurface transmission-mode color filters. Optical Materials Express, 10, 3145-3159(2020).
[105] Z LI, P LIN, Y-W HUANG et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Science Advances, 7, eabe4458(2021).
[106] Z LI, R PESTOURIE, J S PARK et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nature Communications, 13, 2409(2022).
[107] R PESTOURIE, C PÉREZ-ARANCIBIA, Z LIN et al. Inverse design of large-area metasurfaces. Optics Express, 26, 33732-33747(2018).
[108] T JALALI, M JAFARI, A MOHAMMADI. Genetic algorithm optimization of antireflection coating consisting of nanostructured thin films to enhance silicon solar cell efficacy. Materials Science and Engineering: B, 247, 114354(2019).
[109] A YOLALMAZ, E YÜCE. Hybrid design of spectral splitters and concentrators of light for solar cells using iterative search and neural networks. Photonics and Nanostructures-Fundamentals and Applications, 48, 100987(2022).
[110] R PESTOURIE, W YAO, B KANTÉ et al. Efficient inverse design of large-area metasurfaces for incoherent light. Acs Photonics, 10, 854-860(2023).
[111] W HADIBRATA, H WEI, S KRISHNASWAMY et al. Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography. Nano Letters, 21, 2422-2428(2021).
[112] C ROQUES-CARMES, Z LIN, R E CHRISTIANSEN et al. Toward 3D-printed inverse-designed metaoptics. Acs Photonics, 9, 43-51(2022).
[113] Q WU, X LI, L JIANG et al. Deep neural network for designing near-and far-field properties in plasmonic antennas. Optical Materials Express, 11, 1907-1917(2021).
[114] Q WU, X LI, W WANG et al. Comparison of different neural network architectures for plasmonic inverse design. ACS Omega, 6, 23076-23082(2021).
[115] F A A NUGROHO, P BAI, I DARMADI et al. Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection. Nature Communications, 13, 5737(2022).
[116] H CHUNG, J PARK, S V BORISKINA. Inverse-designed waveguide-based biosensor for high-sensitivity, single-frequency detection of biomolecules. Nanophotonics, 11, 1427-1442(2022).
[117] C DORY, D VERCRUYSSE, K Y YANG et al. Inverse-designed diamond photonics. Nature Communications, 10, 3309(2019).
[118] G B HOFFMAN, C DALLO, A STARBUCK et al. Improved broadband performance of an adjoint shape optimized waveguide crossing using a Levenberg-Marquardt update. Optics Express, 27, 24765-24780(2019).
[119] A Y PIGGOTT, E Y MA, L SU et al. Inverse-designed photonics for semiconductor foundries. Acs Photonics, 7, 569-575(2020).
[120] M YUAN, G YANG, S SONG et al. Inverse design of a nano-photonic wavelength demultiplexer with a deep neural network approach. Optics Express, 30, 26201-26211(2022).
[121] K Y YANG, C SHIRPURKAR, A D WHITE et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nature Communications, 13, 7862(2022).
[123] Z A KUDYSHEV, A V KILDISHEV, V M SHALAEV et al. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Applied Physics Reviews, 7, 021407(2020).
[124] H QI, Z DU, X HU et al. High performance integrated photonic circuit based on inverse design method. Opto-Electronic Advances, 5, 210061(2022).