• Advanced Photonics
  • Vol. 2, Issue 5, 056001 (2020)
Vera N. Smolyaninova1, John Cartelli1, Bryan Augstein1, Stephanie Spickard1, Mary S. Devadas1, and Igor I. Smolyaninov2、*
Author Affiliations
  • 1Towson University, Department of Physics Astronomy and Geosciences, Towson, Maryland, United States
  • 2University of Maryland, Department of Electrical and Computer Engineering, College Park, Maryland, United States
  • show less
    DOI: 10.1117/1.AP.2.5.056001 Cite this Article Set citation alerts
    Vera N. Smolyaninova, John Cartelli, Bryan Augstein, Stephanie Spickard, Mary S. Devadas, Igor I. Smolyaninov. Experimental observation of effective gravity and two-time physics in ferrofluid-based hyperbolic metamaterials[J]. Advanced Photonics, 2020, 2(5): 056001 Copy Citation Text show less
    References

    [1] I. I. Smolyaninov, E. E. Narimanov. Metric signature transitions in optical metamaterials. Phys. Rev. Lett., 105, 067402(2010).

    [2] P. A. M. Dirac. Wave equations in conformal space. Ann. Math., 37, 429-442(1936).

    [3] A. D. Sakharov. Cosmological transitions with changes in the signature of the metric. Sov. Phys. JETP, 60, 214(1984).

    [4] I. Bars, Y. C. Kuo. Field theory in two-time physics with N=1 supersymmetry. Phys. Rev. Lett., 99, 041801(2007). https://doi.org/10.1103/PhysRevLett.99.041801

    [5] C. M. Bender et al. Two-dimensional pulse propagation without anomalous dispersion. Phys. Rev. Lett., 119, 114301(2017).

    [6] I. I. Smolyaninov. Hyperbolic Metamaterials(2018).

    [7] I. I. Smolyaninov, Y. J. Hung. Modeling of time with metamaterials. J. Opt. Soc. Am. B, 28, 1591-1595(2011).

    [8] I. I. Smolyaninov. Analog of gravitational force in hyperbolic metamaterials. Phys. Rev. A, 88, 033843(2013).

    [9] J. Barbour, T. Koslowski, F. Mercati. Identification of a gravitational arrow of time. Phys. Rev. Lett., 113, 181101(2014).

    [10] V. N. Smolyaninova et al. Self-assembled tunable photonic hyper-crystals. Sci. Rep., 4, 5706(2014).

    [11] F. Ahrentorp et al. Sensitive high frequency AC susceptometry in magnetic nanoparticle applications, 213-223(2010).

    [12] D. R. Lide. CRC Handbook of Chemistry and Physics(2005).

    [13] F. Ye et al. Subwavelength vortical plasmonic lattice solitons. Opt. Lett., 36, 1179-1181(2011).

    [14] Y. Kou, F. Ye, X. Chen. Multipole plasmonic lattice solitons. Phys. Rev. A, 84, 033855(2011).

    [15] M. G. Silveirinha. Theory of spatial optical solitons in metallic nanowire materials. Phys. Rev. B, 87, 235115(2013).

    [16] F. Ye et al. Subwavelength plasmonic lattice solitons in arrays of metallic nanowires. Phys. Rev. Lett., 104, 106802(2010).

    [17] L. Landau, E. Lifshitz. Field Theory(2004).

    [18] R. C. Kamikawachi et al. Influence of surrounding media refractive index on the thermal and strain sensitivities of long-period gratings. Appl. Opt., 46, 2831-2837(2007).

    [19] G. Fibich, A. L. Gaeta. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett., 25, 335-337(2000).

    [20] R. F. Souza et al. Thermal optical nonlinearity enhanced by gold nanoparticles. Proc. SPIE, 6323, 63231T(2006).

    [21] Y. V. Kartashov, V. A. Vysloukh, L. Torner. Soliton shape and mobility control in optical lattices. Prog. Opt., 52, 63-148(2009).

    [22] I. I. Smolyaninov et al. Experimental demonstration of metamaterial multiverse in a ferrofluid. Opt. Express, 21, 14918-14925(2013).

    [23] I. I. Smolyaninov, E. Hwang, E. E. Narimanov. Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transtions. Phys. Rev. B, 85, 235122(2012).

    [24] I. I. Smolyaninov. Nonlinear optics of photonic hyper-crystals: optical limiting and hyper-computing. J. Opt. Soc. Am. B, 36, 1629-1636(2019).

    [25] M. McCall et al. Roadmap on transformation optics. J. Opt., 20, 063001(2018).

    [26] L. Shen et al. Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials. Appl. Phys. Rev., 7, 021403(2020).

    Vera N. Smolyaninova, John Cartelli, Bryan Augstein, Stephanie Spickard, Mary S. Devadas, Igor I. Smolyaninov. Experimental observation of effective gravity and two-time physics in ferrofluid-based hyperbolic metamaterials[J]. Advanced Photonics, 2020, 2(5): 056001
    Download Citation