• Journal of Advanced Dielectrics
  • Vol. 11, Issue 2, 2150014 (2021)
Do Viet On1, Le Dai Vuong2, Truong Van Chuong1, Dao Anh Quang2, Ho Van Tuyen3、4, and Vo Thanh Tung1、*
Author Affiliations
  • 1Department of Physics, College of Sciences, Hue University, Hue City, Vietnam
  • 2Faculty of Chemical and Environmental Engineering, Hue Industrial College, Hue City, Vietnam
  • 3Institute of Research and Development, Duy Tan University, Da Nang City, Vietnam
  • 4Faculty of Natural Sciences, Duy Tan University, Da Nang City, Vietnam
  • show less
    DOI: 10.1142/S2010135X21500144 Cite this Article
    Do Viet On, Le Dai Vuong, Truong Van Chuong, Dao Anh Quang, Ho Van Tuyen, Vo Thanh Tung. Influence of sintering behavior on the microstructure and electrical properties of BaTiO3 lead-free ceramics from hydrothermal synthesized precursor nanoparticles[J]. Journal of Advanced Dielectrics, 2021, 11(2): 2150014 Copy Citation Text show less
    References

    [1] L. D. Vuong, P. D. Gio, N. D. V. Quang, T. D. Hieu, T. P. Nam. Development of 0.8Pb(Zr0.48Ti0.52)O3–0.2Pb[(Zn1/3Nb2/3) 0.625(Mn1/3Nb2/3)0.375]O3 ceramics for high-intensity ultrasound applications. J. Electron. Mater., 47, 5944(2018).

    [2] L. D. Vuong, V. T. Tung, P. D. Gio. The investigation on the fabrication and characterization of the multicomponent ceramics based on PZT and the relaxor PZN-PMnN ferroelectric materials. Ceramic Materials(2020).

    [3] N. D. T. Luan, L. D. Vuong, T. V. Chuong, N. T. Tho. Structure and physical properties of PZT-PMnN-PSN ceramics near the morphological phase boundary. Adv. Mater. Sci. Eng., 2014, 1(2014).

    [4] V. Rathod. A review of acoustic impedance matching techniques for piezoelectric sensors and transducers. Sensors, 20, 4051(2020).

    [5] D. Wang, J. S. Chen. Progress on the applications of piezoelectric materials in sensors. Mater. Sci. Forum, 848, 749(2016).

    [6] H. Kabra, H. Deore, P. Patil. Review on advanced piezoelectric materials (BaTiO3, PZT). J. Emerg. Technol. Innov. Res., 6, 950(2019).

    [7] E. Aksel, J. Jones. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors (Basel, Switzerland), 10, 1935(2010).

    [8] A. Jain, P. J. A. Sharma, A. Jain, R. P.N. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polym. Eng. Sci., 55, 1589(2015).

    [9] L. D. Vuong, P. D. Gio. Enhancement in dielectric, ferroelectric, and piezoelectric properties of BaTiO3-modified Bi0.5(Na0.4K0.1)TiO3 lead-free ceramics. J. Alloys Compd., 817, 152790(2020).

    [10] D. A. Tuan, V. T. Tung, L. D. Vuong, N. H. Yen and L. T. U. Tu, Investigation of phase formation and poling conditions of lead-free 0.48Ba(Zr0.2Ti0.8)O3-0.52(Ba0.7Ca0.3)TiO3 ceramic, 47(2), 6297 (2018).

    [11] D. A. Tuan, L. D. Vuong, V. T. Tung, N. N. Tuan, N. T. Duong. Dielectric and ferroelectric characteristics of doped BZT-BCT ceramics sintered at low temperature. J. Ceram. Process. Res., 19, 32(2018).

    [12] C. S. Mallam, P. Kumar. Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramics for actuator and energy storage applications. Ceram. Int., 41, 5574(2015).

    [13] T. Badapanda, S. Sahoo, P. Nayak. Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region. IOP Conf. Series: Mater. Sci. Eng., 178, 012032(2017).

    [14] G. Song, Z. Liu, F. Zhang, F. Liu, Y. Gu, Z. Liu, Y. Li. High-throughput synthesis and electrical properties of BNT–BT–KNN lead-free piezoelectric ceramics. J. Mater. Chem. C, 8, 3655(2020).

    [15] D. Hu, Z. Pan, X. Zhang, H. Ye, Z. He, M. Wang, S. Xing, J. Zhai, Q. Fu, J. Liu. Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT–BKT-based ceramics. J. Mater. Chem. C, 8, 591(2020).

    [16] L.-F. Zhu, B.-P. Zhang, Z.-C. Zhang, L.-J. Wang, L.-J. Zheng. Piezoelectric, ferroelectric and ferromagnetic properties of (1−x)BiFeO3–xBaTiO3 lead-free ceramics near morphotropic phase boundary. J. Mater. Sci.: Mater. Electron., 29, 2307(2018).

    [17] W. Gao, L. Jing, X. Lou. Large electric-field-induced strain and enhanced piezoelectric constant in CuO modified BiFeO3-BaTiO3 ceramics. J. Am. Ceram. Soc., 10, 3383(2018).

    [18] E. Politova, N. Golubko, G. Kaleva, A. Mosunov, N. Sadovskaya, S. Stefanovich, D. Kiselev, A. Kislyuk, M. Chichkov, P. Panda. Structure, ferroelectric and piezoelectric properties of KNN-based perovskite ceramics. Ferroelectrics, 538, 45(2019).

    [19] Z. Cen, Y. Huan, W. Feng, Y. Yu, P. Zhao, L. Chen, C. Zhu, L. Li, X. Wang. A high temperature stable piezoelectric strain of KNN-based ceramics. J. Mater. Chem. A, 6, 19967(2018).

    [20] C. Wang, B. Fang, Y. Qu, Z. Chen, S. Zhang, J. Ding. Preparation of KNN based lead-free piezoelectric ceramics via composition designing and two-step sintering. J. Alloys Compd., 832, 153043(2019).

    [21] Z.-Y. Shen, J. Li. Enhancement of piezoelectric constant d33in BaTiO3 ceramics due to nano-domain structure. J. Ceram. Soc. Jpn., 118, 940(2010).

    [22] N. Ma, Z. B.-P. Zhang, W.-G. Yang. Low-temperature sintering of Li2O-doped BaTiO3 lead-free piezoelectric ceramics. J. Electroceram., 28, 275(2012).

    [23] J. C. Wang, P. Zheng, R. Q. Yin, L. Zheng, J. Du, L. Zheng, J. Deng, K. Song, H. B. Qin. Different piezoelectric grain size effects in BaTiO3 ceramics. Ceram. Int., 41, 14165(2015).

    [24] W.-G. Yang, Z. B.-P. Zhang, N. Ma, L. Zhao. High piezoelectric properties of BaTiO3–XLiF ceramics sintered at low temperatures. Journal of the European Ceramic Society, 32, 899(2012).

    [25] Y. Huan, X. Wang, J. Fang, L. Li. Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J. Eur. Ceram. Soc., 34, 1445(2014).

    [26] W.-B. Li, D. Zhou, W.-F. Liu, J.-Z. Su, F. Hussain, D.-W. Wang, G. Wang, Z.-L. Lu, Q.-P. Wang. High-temperature BaTiO3-based ternary dielectric multilayers for energy storage applications with extreme high efficiency. Chem. Eng. J., 414, 128760(2021).

    [27] D. Wang, Z. Fan, G. Rao, G. Wang, Y. Liu, C. Yuan, T. Ma, D. Li, X. Tan, Z. Lu, A. Feteira, S.-Y. Liu, C. Zhou, S. Zhang. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy, 76, 104944(2020).

    [28] H. Yang, Z. Lu, L. Li, W. Bao, H. Ji, J. Li, A. Feteira, F. Xu, Y. Zhang, H. Sun, Z. Huang, W. Lou, K. Song, S. Sun, G. Wang, D. Wang, I. M. Reaney. Novel BaTiO3-based, Ag/Pd-compatible lead-free relaxors with superior energy storage performance. ACS Appl. Mater. Interf., 12, 43942(2020).

    [29] G. Liu, Y. Li, B. Guo, M. Tang, Q. Li, J. Dong, L. Yu, K. Yu, Y. Yan, D. Wang, L. Zhang, H. Zhang, Z. He, L. Jin. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem. Eng. J., 398, 125625(2020).

    [30] A. Bell. Ferroelectrics: The role of ceramic science and engineering. J. Eur. Ceram. Soc., 28, 1307(2008).

    [31] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, Jr. G. A. Rossetti, J. Rödel. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev., 4, 041305(2017).

    [32] Y. Huan, X. Wang, J. Fang, L. Li, I. W. Chen. Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering. J. Am. Ceram. Soc., 96, 3369(2013).

    [33] S. Wada, K. Takeda, T. Tsurumi, T. Kimura. Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Int. Symp. Micro-NanoMechatronics and Human Science, 372-376(2007).

    [34] N. Ma, Z. B.-P. Zhang, W.-G. Yang, D. Guo. Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc., 32, 1059(2012).

    [35] S. Hu, C. Luo, P. Li, J. Hu, G. Li, H. Jiang, W. Zhang. Effect of sintered temperature on structural and piezoelectric properties of barium titanate ceramic prepared by nano-scale precursors. J. Mater. Sci.: Mater. Electron., 28, 9322(2017).

    [36] W.-S. Jung, J. Park, Y. Park, D.-H. Yoon. Effects of impurities on the properties of BaTiO3 synthesized from barium titanyl oxalate. Ceram. Int., 36, 1997(2010).

    [37] M. d. A. Gomes, L. G. Magalhães, A. R. Paschoal, Z. S. Macedo, Á. S. Lima, K. I. B. Eguiluz, G. R. Salazar-Banda. An eco-friendly method of BaTiO3 nanoparticle synthesis using coconut water. J. Nanomater., 2018, 5167182(2018).

    [38] A. Sobha, R. Sumangala. Influence of synthesis method and the precursor on the preparationof barium titanate nano particles. Res. Rev.: J. Mater. Sci., 6, 175(2018).

    [39] H.-W. Lee, S. Moon, C. H. Choi, D. K. Kim. Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method. J. Am. Ceram. Soc., 95, 2429(2012).

    [40] S. Moon, H.-W. Lee, C. H. Choi, D. K. Kim. Influence of ammonia on properties of nanocrystalline barium titanate particles prepared by a hydrothermal method. J. Am. Ceram. Soc., 95, 2248(2012).

    [41] J.-M. Han, M.-R. Joung, J.-S. Kim, Y.-S. Lee, S. Nahm, C. Youn Kyu, J.-H. Paik. Hydrothermal synthesis of BaTiO3 nanopowders using TiO2 nanoparticles. J. Am. Ceram. Soc., 97, 346(2013).

    [42] J. Gao, H. Shi, H. Dong, R. Zhang, D. Chen. Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis. J. Nanopart. Res., 17, 286(2015).

    [43] N. Liu, W. Zhao, J. Rong. CO2-driven synthesis of monodisperse barium titanate microspheres. J. Am. Ceram. Soc., 101, 1407(2018).

    [44] B. W. Lee, S.-B. Cho. Hydrothermal preparation and characterization of ultra-fine BaTiO3 powders from amorphous peroxo-hydroxide precursor. J. Electroceram., 13, 379(2004).

    [45] N. T. Duong, L. D. Vuong, N. M. Son, H. V. Tuyen, T. V. Chuong. The synthesis of TiO2 nanoparticles using sulfuric acid method with the aid of ultrasound. Nanomater. Energy, 6, 1(2017).

    [46] Z. Deng, Y. Dai, W. Chen, X. Pei, J. Liao. Synthesis and characterization of bowl-like single-crystalline BaTiO3 nanoparticles. Nanoscale Res. Lett., 5, 1217(2010).

    [47] J. Gao, H. Shi, J. Yang, T. Li, R. Zhang, D. Chen. Influencing factor investigation on dynamic hydrothermal growth of gapped hollow BaTiO3 nanospheres. Nanoscale Res. Lett., 10, 1033(2015).

    [48] M. Alkathy, A. Hezam, K. S. D. Manoja, J. Wang, C. Cheng, K. Byrappa, J. Raju. Effect of sintering temperature on structural, electrical, and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics. J. Alloys Compd., 762, 49(2018).

    [49] N. T. Tho, L. D. Vuong. Sintering behavior and enhanced energy storage performance of SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics. J. Electroceram., 1(2020).

    [50] N. Hana, A. Megriche, M. El Maaoui. Effect of sintering temperature on microstructure and electrical properties of Sr1−x(Na0.5Bi0.5)xBi2Nb2O9 solid solutions. J. Adv. Ceram., 3, 17(2014).

    [51] M. Prades, N. Masó, H. Beltrán, E. Cordoncillo, A. R. West. Polymorphism of BaTiO3 acceptor doped with Mn3+, Fe3+, and Ti3+. J. Am. Ceram. Soc., 91, 2364(2008).

    [52] N. Sareecha, W. A. Shah, M. Anis-ur-Rehman, M. Mirza, M. S. Awan. Electrical investigations of BaTiO3 ceramics with Ba/Ti contents under influence of temperature. Solid State Ionics, 303, 16(2017).

    [53] M. M. Vijatović Petrović, J. D. Bobić, B. Stojanović. History and challenges of barium titanate: Part II. Sci. Sinter., 40, 235(2008).

    [54] T. Kimura, Q. Dong, S. Yin, T. Hashimoto, A. Sasaki, S. Aisawa, T. Sato. Synthesis and piezoelectric properties of Li, Ca and Mn-codoped BaTiO3 by a solvothermal approach. IOP Conf. Series: Mater. Sci. Eng., 47, 012018(2013).

    Do Viet On, Le Dai Vuong, Truong Van Chuong, Dao Anh Quang, Ho Van Tuyen, Vo Thanh Tung. Influence of sintering behavior on the microstructure and electrical properties of BaTiO3 lead-free ceramics from hydrothermal synthesized precursor nanoparticles[J]. Journal of Advanced Dielectrics, 2021, 11(2): 2150014
    Download Citation