• Optical Instruments
  • Vol. 45, Issue 6, 14 (2023)
Yingwei TANG, Rongfu ZHANG*, Ran DING, and Jie ZHANG
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.202302030011 Cite this Article
    Yingwei TANG, Rongfu ZHANG, Ran DING, Jie ZHANG. MSA-Net: few-shot object detection with multi-stage attention mechanism[J]. Optical Instruments, 2023, 45(6): 14 Copy Citation Text show less
    References

    [3] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60, 91-110(2004).

    [5] FINN C, ABBEEL P, LEVINE S. Modelagnostic metalearning f fast adaptation of deep wks[C]Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR. g, 2017: 1126 1135.

    [6] SUNG F, YANG Y X, ZHANG L, et al. Learning to compare: relation wk f fewshot learning[C]Proceedings of 2018 IEEECVF Conference on Computer Vision Pattern Recognition. Salt Lake City: IEEE, 2018: 1199 1208.

    [7] SNELL J, SWERSKY K, ZEMEL R. Prototypical wks f fewshot learning[C]Proceedings of the 31st International Conference on Neural Infmation Processing Systems. Long Beach: Curran Associates Inc. , 2017: 4080 4090.

    [8] CHEN H, WANG Y L, WANG G Y, et al. LSTD: a lowshot transfer detect f object detection [C]Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New leans: AAAI Press, 2018: 2836 2843.

    [9] WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple fewshot object detection[C]Proceedings of the 37th International Conference on Machine Learning. Vienna: JMLR. g, 2020: 920929.

    [10] WANG Y X, RAMANAN D, HEBERT M. Metalearning to detect rare objects[C]Proceedings of 2019 IEEECVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9925 9934.

    [11] YAN X P, CHEN Z L, XU A N, et al. Meta RCNN: towards general solver f instancelevel lowshot learning[C]Proceedings of 2019 IEEECVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9577 9586.

    [12] FU K, ZHANG T F, ZHANG Y, et al. Meta-SSD: towards fast adaptation for few-shot object detection with meta-learning[J]. IEEE Access, 7, 77597-77606(2019).

    [13] QIAO L M, ZHAO Y X, LI Z Y, et al. DeFRCN: decoupled faster RCNN f fewshot object detection[EBOL]. (2021–08–20). https:arxiv.gabs2108.09017.

    [14] LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyra wks f object detection[C]Proceedings of 2017 IEEE Conference on Computer Vision Pattern Recognition. Honolulu: IEEE, 2017: 2117 2125.

    [15] KIM Y, KANG B N, KIM D. SAN: learning relationship between convolutional features f multiscale object detection[C]Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 316 331.

    [16] WU J X, LIU S T, HUANG D, et al. Multiscale positive sample refinement f fewshot object detection[C]Proceedings of the 16th European Conference on Computer Vision. Glasgow: Springer, 2020: 456 472.

    [17] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 88, 303-338(2010).

    [18] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]Proceedings of the 13th European Conference on Computer Vision. Zurich: Springer, 2014: 740 755.

    [19] XIAO Y, LEPETIT V, MARLET R. Fewshot object detection viewpoint estimation f objects in the wild[C]Proceedings of the 16th European Conference on Computer Vision. Glasgow: Springer, 2020: 192 210.

    [20] KANG B Y, LIU Z, WANG X, et al. Fewshot object detection via feature reweighting[C]Proceedings of 2019 IEEECVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8420 8429.

    [21] HE K M, GKIOXARI G, DOLLR P, et al. Mask RCNN[C]Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2961 2969.

    [22] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [23] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).

    [24] DENG J, DONG W, SOCHER R, et al. Image: a lange scale hierarchical image database [C]Proceedings of 2009 IEEE Conference on Computer Vision Pattern Recognition. Miami: IEEE, 2009: 248255.

    [25] ZHU X Z, SU W J, LU L W, et al. Defmable DETR: defmable transfmers f endtoend object detection[EBOL]. (2021–3–18). https:arxiv.gabs2010.04159.

    [26] KARLINSKY L, SHTOK J, HARARY S, et al. RepMet: representativebased metric learning f classification fewshot object detection[C]Proceedings of 2019 IEEECVF Conference on Computer Vision Pattern Recognition. Long Beach: IEEE, 2019: 5197 5206.

    [27] ZHU C C, CHEN F Y, AHMED U, et al. Semantic relation reasoning f shotstable fewshot object detection[C]Proceedings of 2021 IEEECVF Conference on Computer Vision Pattern Recognition. Nashville: IEEE, 2021: 8782 8791.

    [28] SUN B, LI B H, CAI S C, et al. FSCE: fewshot object detection via contrastive proposal encoding[C]Proceedings of 2021 IEEECVF Conference on Computer Vision Pattern Recognition. Nashville: IEEE, 2021: 7352 7362.

    Yingwei TANG, Rongfu ZHANG, Ran DING, Jie ZHANG. MSA-Net: few-shot object detection with multi-stage attention mechanism[J]. Optical Instruments, 2023, 45(6): 14
    Download Citation