• Optical Instruments
  • Vol. 44, Issue 5, 1 (2022)
Pei MA, Wushuang SHEN, Huijuan SHEN, and Xuedian ZHANG*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2022.005.001 Cite this Article
    Pei MA, Wushuang SHEN, Huijuan SHEN, Xuedian ZHANG. Functional near-infrared spectroscopy brain imaging system: A Review[J]. Optical Instruments, 2022, 44(5): 1 Copy Citation Text show less
    References

    [1] VILLRINGER A, PLANCK J, HOCK C, et al. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults[J]. Neuroscience Letters, 154, 101-104(1993).

    [2] OKADA E, DELPY D T. Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal[J]. Applied Optics, 42, 2915-2921(2003).

    [4] MAIKALA R V. Modified Beer's law - historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue[J]. International Journal of Industrial Ergonomics, 40, 125-134(2010).

    [5] SCHOLKMANN F, KLEISER S, METZ A J, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology[J]. NeuroImage, 85, 6-27(2014).

    [6] TORRICELLI A, CONTINI D, PIFFERI A, et al. Time domain functional NIRS imaging for human brain mapping[J]. NeuroImage, 85, 28-50(2014).

    [7] SCHOLL C A, WATHEN J J, FITCH M J, et al. Evaluation of neural infmation content from the phase component of a 32channel frequencydomain fNIRS system[C]Proceedings of SPIE 11629, Optical Techniques in Neurosurgery, Neurophotonics, Optogeics. SPIE, 2021: 116292I.

    [8] OBRIG H, WENZEL R, KOHL M, et al. Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?[J]. International Journal of Psychophysiology, 35, 125-142(2000).

    [10] SATO H, KIGUCHI M, KAWAGUCHI F, et al. Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy[J]. NeuroImage, 21, 1554-1562(2004).

    [12] CHITNIS D, AIRANTZIS D, HIGHTON D, et al. Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo[J]. Review of Scientific Instruments, 87, 065112(2016).

    [13] BARRETT D W, GONZALEZ-LIMA F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans[J]. Neuroscience, 230, 13-23(2013).

    [14] IWANO T, UMEYAMA S. Estimation of crosstalk in LED fNIRS by photon propagation Monte Carlo simulation[C]Proceedings of SPIE 9792, Biophotonics Japan 2015. Tokyo: SPIE, 2015: 97921H.

    [17] IEC. IEC 60825—1: 2014. Safety of laser productspart 1: equipment classification requirements[S]. Geneva: IEC, 2014.

    [18] GIACOMELLI M G. Evaluation of silicon photomultipliers for multiphoton and laser scanning microscopy[J]. Journal of Biomedical Optics, 24, 106503(2019).

    [19] CHIARELLI A M, LIBERTINO S, ZAPPASODI F, et al. Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response[J]. Neurophotonics, 4, 035002(2017).

    [21] YAQUB M A, WOO S W, HONG K S. Compact, portable, high-density functional near-infrared spectroscopy system for brain imaging[J]. IEEE Access, 8, 128224-128238(2020).

    [23] SULTANA A, KAMRANI E, SAWAN M. CMOS silicon avalanche photodiodes for NIR light detection: a survey[J]. Analog Integrated Circuits and Signal Processing, 70, 1-13(2012).

    [24] CHEN C, MA Z C, LIU Z H, et al. An energy-efficient wearable functional near-infrared spectroscopy system employing dual-level adaptive sampling technique[J]. IEEE Transactions on Biomedical Circuits and Systems, 16, 119-128(2022).

    [25] TSOW F, KUMAR A, HOSSEINI S H, et al. A low-cost, wearable, do-it-yourself functional near-infrared spectroscopy (DIY-fNIRS) headband[J]. Hardwarex, 10, e00204(2021).

    [26] MAIRA G, CHIARELLI A M, BRAFA S, et al. Imaging system based on silicon photomultipliers and light emitting diodes for functional near-infrared spectroscopy[J]. Applied Sciences, 10, 1068(2020).

    [27] FUNANE T, NUMATA T, SATO H, et al. Rearrangeable and exchangeable optical module with system-on-chip for wearable functional near-infrared spectroscopy system[J]. Neurophotonics, 5, 011007(2017).

    [29] WATHEN J J, FITCH M J, PAGAN V R, et al. A 32channel frequencydomain fNIRS system based on silicon photomultiplier receivers[C]Proceedings of SPIE 11629, Optical Techniques in Neurosurgery, Neurophotonics, Optogeics. SPIE, 2021: 116291Q.

    [30] LIU Y, LIU D Y, ZHANG Y, et al. A portable fNIRS-topography system for BCI applications: full parallel detection and pilot paradigm validation[J]. Chinese Journal of Lasers, 48, 1107001(2021).

    [32] TANAKA K. Neuroscience on cognitive control of behavior: functional division among prefrontal areas[J]. Brain and Nerve, 71, 1357-1371(2019).

    [33] JIANG Y H, LI Z, ZHAO Y, et al. Targeting brain functions from the scalp: transcranial brain atlas based on large-scale fMRI data synthesis[J]. NeuroImage, 210, 116550(2020).

    [34] FENG S C, ZENG F A, CHANCE B. Photon migration in the presence of a single defect: a perturbation analysis[J]. Applied Optics, 34, 3826-3837(1995).

    [35] KORHONEN V O, MYLLYLÄ T S, KIRILLIN M Y, et al. Light propagation in NIR spectroscopy of the human brain[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 7100310(2014).

    [36] FERRARI M, QUARESIMA V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application[J]. Neuroimage, 63, 921-935(2012).

    [37] FRIJIA E M, BILLING A, LLOYD-FOX S, et al. Functional imaging of the developing brain with wearable high-density diffuse optical tomography: a new benchmark for infant neuroimaging outside the scanner environment[J]. NeuroImage, 225, 117490(2021).

    [38] XU G, LI X L, LI D, et al. A DAQ-device-based continuous wave near-infrared spectroscopy system for measuring human functional brain activity[J]. Computational and Mathematical Methods in Medicine, 2014, 107320(2014).

    [41] LIANG Z H, MINAGAWA Y, YANG H C, et al. Symbolic time series analysis of fNIRS signals in brain development assessment[J]. Journal of Neural Engineering, 15, 066013(2018).

    [43] NOVI S L, ROBERTS E, SPAGNUOLO D, et al. Functional near-infrared spectroscopy for speech protocols: characterization of motion artifacts and guidelines for improving data analysis[J]. Neurophotonics, 7, 015001(2020).

    [44] MOLAVI B, DUMONT G A. Wavelet-based motion artifact removal for functional near-infrared spectroscopy[J]. Physiological Measurement, 33, 259-270(2012).

    [45] PERPETUINI D, CARDONE D, FILIPPINI C, et al. A motion artifact correction procedure for fNIRS signals based on wavelet transform and infrared thermography video tracking[J]. Sensors, 21, 5117(2021).

    [46] GU Y, HAN J X, LIANG Z H, et al. Empirical mode decomposition-based motion artifact correction method for functional near-infrared spectroscopy[J]. Journal of Biomedical Optics, 21, 015002(2016).

    [47] ZHANG F, CHEONG D, KHAN A F, et al. Correcting physiological noise in whole-head functional near-infrared spectroscopy[J]. Journal of Neuroscience Methods, 360, 109262(2021).

    [48] KIRILINA E, YU N, JELZOW A, et al. Identifying and quantifying main components of physiological noise in functional near infrared spectroscopy on the prefrontal cortex[J]. Frontiers in Human Neuroscience, 7, 864(2013).

    [49] ZHANG Y, SUN J, ROLFE P. Reduction of global interference in functional multidistance near-infrared spectroscopy using empirical mode decomposition and recursive least squares: a Monte Carlo study[J]. Journal of the European Optical Society-Rapid Publications, 6, 11033(2011).

    [50] REDDY P, IZZETOGLU M, SHEWOKIS P A, et al. Evaluation of fNIRS signal components elicited by cognitive and hypercapnic stimuli[J]. Scientific Reports, 11, 23457(2021).

    [51] ESSENPREIS E C, ELWELL C E, COPE M, et al. Spectral dependence of temporal point spread functions in human tissues[J]. Applied Optics, 32, 418-425(1993).

    [52] MATCHER S J, ELWELL C E, COOPER C E, et al. Performance comparison of several published tissue near-infrared spectroscopy algorithms[J]. Analytical Biochemistry, 227, 54-68(1995).

    [53] HUPPERT T J, DIAMOND S G, FRANCESCHINI M A, et al. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain[J]. Applied Optics, 48, D280-D298(2009).

    [54] HOU X, ZHANG Z, ZHAO C, et al. NIRS-KIT: a MATLAB toolbox for both resting-state and task fNIRS data analysis[J]. Neurophotonics, 8(1):, 02(0108).

    [55] ZHAO Y, SUN P P, TAN F L, et al. NIRS-ICA: a MATLAB toolbox for independent component analysis applied in fNIRS studies[J]. Frontiers in Neuroinformatics, 15, 683735(2021).

    [56] TREMBLAY J, MARTÍNEZ-MONTES E, HÜSSER A, et al. LIONirs: flexible matlab toolbox for fNIRS data analysis[J]. Journal of Neuroscience Methods, 370, 109487(2022).

    [57] WANG R, HAO Y X, YU Q, et al. Depression analysis and recognition based on functional near-infrared spectroscopy[J]. IEEE Journal of Biomedical and Health Informatics, 25, 4289-4299(2021).

    [58] KHAN H, NOORI F M, YAZIDI A, et al. Classification of individual finger movements from right hand using fNIRS signals[J]. Sensors, 21, 7943(2021).

    [59] MA D N, IZZETOGLU M, HOLTZER R, et al. Machine learning-based classification of active walking tasks in older adults using fNIRS[J]. arXiv:, 03987, 2021(2102).

    [61] QUARESIMA V, FERRARI M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review[J]. Organizational Research Methods, 22, 46-68(2019).

    [63] ORTEGA P, ZHAO T, FAISAL A. CNNATT: deep EEG & fNIRS real-time decoding of bimanual forces[J]. arXiv:, 05334, 2021(2103).

    [64] LIU D Y, WANG B Y, PAN T T, et al. Toward quantitative near infrared brain functional imaging: lock-in photon counting instrumentation combined with tomographic reconstruction[J]. IEEE Access, 7, 86829-86842(2019).

    [65] CHEN M, BLUMEN H M, IZZETOGLU M, et al. Spatial coregistration of functional near-infrared spectroscopy to brain MRI[J]. Journal of Neuroimaging, 27, 453-460(2017).

    [66] CHEN X R, SONG X Z, CHEN L, et al. Performance improvement for detecting brain function using fNIRS: a multi-distance probe configuration with PPL method[J]. Frontiers in Human Neuroscience, 14, 569508(2020).

    [67] WU S T, SILVA J A I R, NOVI S L, et al. Accurate IMAGE-guided (Re) placement of NIRS probes[J]. Computer Methods and Programs in Biomedicine, 200, 105844(2021).

    [68] MACHADO A, CAI Z, PELLEGRINO G, et al. Optimal positioning of optodes on the scalp for personalized functional near-infrared spectroscopy investigations[J]. Journal of Neuroscience Methods, 309, 91-108(2018).

    [69] AGR D, CANICATT R, PINTO M, et al. Design implementation of a ptable fNIRS embedded system[M]DE GLIA A. Applications in Electronics Pervading Industry, Environment Society. Cham: Springer, 2016: 4350.

    [70] SAIKIA M J, MANKODIYA K. 3Dprinted humancentered design of fNIRS optode f the ptable neuroimaging[C]Proceedings of SPIE 10870, Design Quality f Biomedical Technologies XII. San Francisco: SPIE, 2019: 108700Z.

    [71] BHUTTA M R, WOO S W, KHAN M J, et al. Effect of anodal tDCS on human prefrontal ctex observed by fNIRS[C]Proceedings of the 6th IEEE International Conference on Biomedical Robotics Biomechatronics (Biob). Singape: IEEE, 2016: 957961.

    [72] PARK J, JEONG J, SHIN J. Implementation of multiconnected singlechannel functional nearinfrared spectroscopy system f hyperscanning study[C]Proceedings of the 8th International Winter Conference on BrainComputer Interface (BCI). Gangwon: IEEE, 2020: 1 2.

    Pei MA, Wushuang SHEN, Huijuan SHEN, Xuedian ZHANG. Functional near-infrared spectroscopy brain imaging system: A Review[J]. Optical Instruments, 2022, 44(5): 1
    Download Citation