• Chinese Optics Letters
  • Vol. 22, Issue 11, 111404 (2024)
Rongtao Su1,2,3,*, Jinhu Long1, Kaikai Jin1, Hongxiang Chang1..., Yanxing Ma1,2,3 and Pu Zhou1,**|Show fewer author(s)
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202422.111404 Cite this Article Set citation alerts
    Rongtao Su, Jinhu Long, Kaikai Jin, Hongxiang Chang, Yanxing Ma, Pu Zhou, "Dynamic beam shaping with a compact coherently combined fiber laser array," Chin. Opt. Lett. 22, 111404 (2024) Copy Citation Text show less
    References

    [1] C. Jauregui, J. Limpert, A. Tünnermann. High-power fibre lasers. Nat. Photonics, 7, 861(2013).

    [2] M. N. Zervas, C. A. Codemard. High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron., 20, 219(2014).

    [3] C. N. Danson, C. Haefner, J. Bromage et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng., 7, e54(2019).

    [4] M. Malinauskas, A. Žukauskas, S. Hasegawa et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 5, e16133(2016).

    [5] J. Bi, L. Wu, S. Li et al. Beam shaping technology and its application in metal laser additive manufacturing: a review. J. Mater. Res. Technol., 26, 4606(2023).

    [6] M. O’Connor, V. Gapontsev, V. Fomin et al. Power scaling of SM fiber lasers toward 10 kW. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, CThA3(2009).

    [7] F. Beier, C. Hupel, S. Kuhn et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier. Opt. Express, 25, 14892(2017).

    [8] Y. Wang, R. Kitahara, W. Kiyoyama et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad. Proc. SPIE, 11260, 1126022(2020).

    [9] S. Du, T. Qi, D. Li et al. 10 kW fiber amplifier seeded by random fiber laser with suppression of spectral broadening and SRS. IEEE Photon. Technol. Lett., 34, 721(2022).

    [10] L. Huang, H. Wu, R. Li et al. Homemade confined-doped fiber for 10 kW level fiber laser output with good beam quality. High Power Laser Part. Beams, 34, 111002(2022).

    [11] T. U. Tumkur, T. Voisin, R. Shi et al. Nondiffractive beam shaping for enhanced optothermal control in metal additive manufacturing. Sci. Adv., 7, 9358(2021).

    [12] X. Wang, X. He, T. Wang et al. Internal pores in DED Ti-6.5Al-2Zr-Mo-V alloy and their influence on crack initiation and fatigue life in the mid-life regime. Addit. Manuf., 28, 373(2019).

    [13] W. Zhang, H. Ma, Q. Zhang et al. Prediction of powder bed thickness by spatter detection from coaxial optical images in selective laser melting of 316L stainless steel. Mater. Des., 213, 110301(2022).

    [14] Z. Feng, L. Huang, G. Jin et al. Designing double freeform optical surfaces for controlling both irradiance and wavefront. Opt. Express, 21, 28693(2013).

    [15] S. Wei, Z. Zhu, Z. Fan et al. Double freeform surfaces design for beam shaping with non-planar wavefront using an integrable ray mapping method. Opt. Express, 27, 26757(2019).

    [16] A. Nissenbaum, N. Armon, E. Shekel. Dynamic beam lasers based on coherent beam combining. Proc. SPIE, 11981, 119810B(2022).

    [17] B. Roy Frieden. Lossless conversion of a plane laser wave to a plane wave of uniform irradiance. Appl. Opt., 4, 1400(1965).

    [18] J. A. Hoffnagle, C. Michael Jefferson. Design and performance of a refractive optical system that converts a Gaussian to a flattop beam. Appl. Opt., 39, 5488(2000).

    [19] Z. Feng, L. Huang, M. Gong et al. Beam shaping system design using double freeform optical surfaces. Opt. Express, 21, 14728(2013).

    [20] S. Bollanti, P. D. Lazzaro, D. Murra et al. Edge steepness and plateau uniformity of a nearly flat-top-shaped laser beam. Appl. Phys. B, 78, 195(2004).

    [21] M. E. Motamedi, W. H. Southwell, W. J. Gunning. Antireflection surfaces in silicon using binary optics technology. Appl. Opt., 31, 4371(1992).

    [22] A. J. Caley, M. R. Taghizadeh. Analysis of the effects of bias phase and wavelength choice on the design of dual-wavelength diffractive optical elements. J. Opt. Soc. Am. A, 23, 193(2006).

    [23] N. Sanner, N. Huot, E. Audouard et al. Direct ultrafast laser micro-structuring of materials using programmable beam shaping. Opt. Lasers Eng., 45, 737(2007).

    [24] Z. Kuang, J. Li, S. Edwardson et al. Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator. Opt. Lasers Eng., 70, 1(2015).

    [25] J. Li, Y. Tang, Z. Kuang et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators. Opt. Lasers Eng., 112, 59(2019).

    [26] S. Li, Y. Wang, Z. Lu et al. Spatial beam shaping for high-power frequency tripling lasers based on a liquid crystal spatial light modulator. Opt. Commun., 367, 181(2016).

    [27] T. Y. Fan. Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quantum Electron., 11, 567(2005).

    [28] C. X. Yu, S. J. Augst, S. M. Redmond et al. Coherent combining of a 4 kW, eight-element fiber amplifier array. Opt. Lett., 36, 2686(2011).

    [29] A. Brignon. Coherent Laser Beam Combining(2013).

    [30] H. Ahn, H. Kong. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements. Opt. Express, 23, 12407(2015).

    [31] T. Weyrauch, M. Vorontsov, J. Mangano et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km. Opt. Lett., 41, 840(2016).

    [32] Z. Huang, X. Tang, Y. Luo et al. Active phase locking of thirty fiber channels using multilevel phase dithering method. Rev. Sci. Instrum., 87, 033109(2016).

    [33] R. Liu, C. Peng, W. Wu et al. Coherent beam combination of multiple beams based on near-field angle modulation. Opt. Express, 26, 2045(2018).

    [34] D. Wang, Q. Du, T. Zhou et al. Stabilization of the 81-channel coherent beam combination using machine learning. Opt. Express, 29, 5694(2021).

    [35] M. Shpakovych, G. Maulion, V. Kermene et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop. Opt. Express, 29, 12307(2021).

    [36] P. Zhou, R. Su, Y. Ma et al. Review of coherent laser beam combining research progress in the past decade. Chin. J. Lasers, 48, 0401003(2021).

    [37] J. Zuo, F. Zou, X. Zhou et al. Coherent combining of a large-scale fiber laser array over 2.1 km in turbulence based on a beam conformal projection system. Opt. Lett., 47, 365(2022).

    [38] E. Shekel, Y. Vidne, B. Urbach. 16 kW single mode CW laser with dynamic beam for material processing. Proc. SPIE, 11260, 1126021(2020).

    [39] M. Müller, C. Aleshire, A. Klenke et al. 10.4 kW coherently combined ultrafast fiber laser. Opt. Lett., 45, 3083(2020).

    [40] J. Wu, Y. Ma, P. Ma et al. Coherently combined fiber laser with 20 kW high power output. Infrared Laser Eng., 50, 20210621(2021).

    [41] I. Fsaifes, C. Ranély-Vergé-Dépré, M. Veinhard et al. Far field energy distribution control using a coherent beam combining femtosecond digital laser. Opt. Express, 31, 8217(2023).

    [42] D. Zhi, T. Hou, P. Ma et al. Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology. High Power Laser Sci. Eng., 7, 33(2019).

    [43] T. Yu, H. Xia, W. Xie et al. Orbital angular momentum mode detection of the combined vortex beam generated by coherent combining technology. Opt. Express, 28, 35795(2020).

    [44] J. Long, T. Hou, Q. Chang et al. Generation of optical vortex lattices by a coherent beam combining system. Opt. Lett., 46, 3665(2021).

    [45] M. Veinhard, S. Bellanger, L. Daniault et al. Orbital angular momentum beams generation from 61 channels coherent beam combining femtosecond digital laser. Opt. Lett., 46, 25(2021).

    [46] J. Long, X. Chen, Q. Chang et al. Controllable customization of optical vortex lattices with coherent laser array. Opt. Laser Technol., 160, 109045(2023).

    [47] J. Long, K. Jin, Q. Chen et al. Generating the 1.5 kW mode-tunable fractional vortex beam by a coherent beam combining system. Opt. Lett., 48, 5021(2023).

    [48] J. K. Jabczyński. Bessel-Gauss coherently combined beams. Opt. Express, 32, 10068(2024).

    [49] A. Boju, G. Maulion, J. Saucourt et al. Small footprint phase locking system for a large tiled aperture laser array. Opt. Express, 29, 11445(2021).

    [50] J. Long, H. Chang, Y. Zhang et al. Compact internal sensing phase locking system for coherent combining of fiber laser array. Opt. Laser Technol., 148, 107775(2022).

    [51] J. Long, J. Zhang, H. Chang et al. Coherent combining of a fiber laser array via cascaded internal phase control technique. Chin. Opt. Lett., 21, 081402(2023).

    [52] T. Hou, Y. Zhang, Q. Chang et al. High-power vortex beam generation enabled by a phased beam array fed at the nonfocal-plane. Opt. Express, 27, 4046(2019).

    [53] L. A. Beresnev, R. A. Motes, K. J. Townes et al. Design of a noncooled fiber collimator for compact, high-efficiency fiber laser arrays. Appl. Opt., 56, B169(2017).

    [54] P. Zhou, Z. Liu, X. Wang et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE J. Sel. Top. Quantum Electron., 15, 248(2009).

    [55] V. Jolivet, P. Bourdon, B. Bennai et al. Beam shaping of single-mode and multimode fiber amplifier arrays for propagation through atmospheric turbulence. IEEE J. Sel. Top. Quantum Electron., 15, 257(2009).

    [56] J. Long, S. He, Q. Chang et al. Directly emitting a high-power phase-locked laser array by an internal phase sensing system. IEEE Photonics J., 16, 3351734(2024).

    [57] J. Long, Y. Deng, Z. Gao et al. High-power mode-programmable orbital angular momentum beam emitter with an internally sensed optical phased array. Chin. Opt. Lett., 22, 021402(2024).

    [58] X. Jia, G. Zhu, Y. Zhang et al. Laser processing of alumina ceramic by spatially and temporally superposing the millisecond pulse and nanosecond pulse train. Opt. Express, 28, 676(2020).

    [59] X. Jia, J. Dong, Y. Chen et al. Nanosecond-millisecond combined pulse laser drilling of alumina ceramic. Opt. Lett., 45, 1691(2020).

    [60] X. Jia, Y. Chen, L. Liu et al. Combined pulse laser: reliable tool for high-quality, high-efficiency material processing. Opt. Laser Technol., 153, 108209(2022).

    [61] Y. Ding, L. Liu, C. Wang et al. Bioinspired near-full transmittance MgF2 window for infrared detection in extremely complex environments. ACS Appl. Mater. Interfaces., 15, 30985(2023).

    [62] X. Jia, Z. Li, C. Wang et al. Study of the dynamics of material removal processes in combined pulse laser drilling of alumina ceramic. Opt. Laser Technol., 160, 109053(2023).

    [63] X. Jia, J. Luo, C. Guo et al. High-energy continuous wave laser ablation of alumina ceramic. J. Mater. Res. Technol., 27, 5389(2023).

    [64] H. Chang, R. Su, Y. Zhang et al. Non-mechanical axial focus tuning by coherent beam combining technique. Opt. Lasers Eng., 174, 107941(2024).

    Rongtao Su, Jinhu Long, Kaikai Jin, Hongxiang Chang, Yanxing Ma, Pu Zhou, "Dynamic beam shaping with a compact coherently combined fiber laser array," Chin. Opt. Lett. 22, 111404 (2024)
    Download Citation