[2] ZHU W Z, YAN M. Effect of gas flow rate on ultrafine SiC powders synthesized through chemical vapor deposition in the SiH4-C2H4-H2 system[J]. Scripta Materialia, 1998, 39(12): 1675-1680.
[3] LELY J A. Darstellung von einkristallen von silicium carbid und beherrschung von art und menge der eingebautem verunreingungen[EB/OL]. 1955.
[4] TAIROV Y M, TSVETKOV V F. Investigation of growth processes of ingots of silicon carbide single crystals[J]. Journal of Crystal Growth, 1978, 43(2): 209-212.
[5] RENGARAJAN V, BROUHARD B K, NOLAN M C, et al. Axial gradient transport (AGT) growth process and apparatus:PA, US, 14/967926[P]. 2015-12-14.
[6] ZWIEBACK I, ANDERSON T E, SOUZIS A E, et al. Large diameter, high quality SiC single crystals, method and apparatus: WO, US8741413 B2[P]. 2014-06-03.
[7] HOBGOOD H M, GLASS R C, AUGUSTINE G, et al. Semi-insulating 6H-SiC grown by physical vapor transport[J]. Applied Physics Letters, 1995, 66(11): 1364-1366.
[8] LI Q, POLYAKOV A Y, SKOWRONSKI M, et al. Nonuniformities of electrical resistivity in undoped 6H-SiC wafers[J]. Journal of Applied Physics, 2005, 97(11): 113705.
[9] BERKMAN E, LEONARD R T, PAISLEY M J, et al. Defect status in SiC manufacturing[J]. Materials Science Forum, 2009, 615/616/617: 3-6.
[10] POWELL A R, SUMAKERIS J J, KHLEBNIKOV Y, et al. Bulk growth of large area SiC crystals[J]. Materials Science Forum, 2016, 858: 5-10.
[11] LIN H. Power SiC 2016: materials, devices, and applications[R]. 2016.
[13] LIU J L, GAO J Q, CHENG J K, et al. Methods for the reduction of the micropipe density in SiC single crystals[J]. Journal of Materials Science, 2007, 42(15): 6148-6152.
[14] KUHR T A, SANCHEZ E K, SKOWRONSKI M, et al. Hexagonal voids and the formation of micropipes during SiC sublimation growth[J]. Journal of Applied Physics, 2001, 89(8): 4625-4630.
[15] YANG X L, YANG K, CHEN X F, et al. Physical vapor transport growth of 4H-SiC on {000-1} vicinal surfaces[J]. Materials Science Forum, 2015, 821/822/823: 68-72.
[16] TSUGE H, USHIO S, SATO S, et al. Growth of low basal plane dislocation density 4H-SiC crystals in controlled temperature distribution inside the crucible[J]. Materials Science Forum, 2013, 740/741/742: 7-10.
[17] MA X Y. Superscrew dislocations in silicon carbide: dissociation, aggregation, and formation[J]. Journal of Applied Physics, 2006, 99(6): 063513.
[18] KOHN V G, ARGUNOVA T S, JE J H. Study of micropipe structure in SiC by X-ray phase contrast imaging[J]. Applied Physics Letters, 2007, 91(17): 171901.
[19] HEINDL J, DORSCH W, STRUNK H P, et al. Dislocation content of micropipes in SiC[J]. Physical Review Letters, 1998, 80(4): 740.
[20] MANNING I, MATSUDA Y, CHUNG G, et al. Progress in bulk 4H SiC crystal growth for 150 mm wafer production[J]. Materials Science Forum, 2020, 1004: 37-43.
[21] LEONARD R T, KHLEBNIKOV Y, POWELL A R, et al. 100 mm 4HN-SiC wafers with zero micropipe density[J]. Materials Science Forum, 2008, 600/601/602/603: 7-10.
[22] QUAST J, HANSEN D, LOBODA M, et al. High quality 150 mm 4H SiC wafers for power device production[J]. Materials Science Forum, 2015, 821/822/823: 56-59.
[23] MANNING I, ZHANG J, THOMAS B, et al. Large area 4H SiC products for power electronic devices[J]. Materials Science Forum, 2016, 858: 11-14.
[24] LENDENMANN H, DAHLQUIST F, JOHANSSON N, et al. Long termoperation of 4.5 kV PiN and 2.5 kV JBS Diodes[J]. Materials Science Forum, 2001,353-356: 727-730.
[25] CHEN Y, DUDLEY M. Direct determination of dislocation sense of closed-core threading screw dislocations using synchrotron white beam X-ray topography in 4H silicon carbide[J]. Applied Physics Letters, 2007, 91(14): 141918.
[26] HUANG X R, DUDLEY M, VETTER W M, et al. Direct evidence of micropipe-related pure superscrew dislocations in SiC[J]. Applied Physics Letters, 1999, 74(3): 353-355.
[27] SCHMITT E, STRAUBINGER T, RASP M, et al. Defect reduction in sublimation grown SiC bulk crystals[J]. Superlattices and Microstructures, 2006, 40(4/5/6): 320-327.
[28] SAKWE S A, MüLLER R, WELLMANN P J. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC[J]. Journal of Crystal Growth, 2006, 289(2): 520-526.
[29] HIGASHI E, TAJIMA M, HOSHINO N, et al. Defect observation in SiC wafers by room-temperature photoluminescence mapping[J]. Materials Science in Semiconductor Processing, 2006, 9(1/2/3): 53-57.
[30] PENG Y, XU X G, HU X B, et al. A comparative study of the morphologies of etch pits in semi-insulating silicon carbide single crystals[J]. Materials Science Forum, 2011, 679/680: 145-152.
[31] XU H Y, GAO Y Q, PENG Y, et al. The stress birefringence images of low angle grain boundaries in 6H-SiC single crystals[J]. Crystal Research and Technology, 2012, 47(6): 603-609.
[32] CHEN X F, ZHANG F S, YANG X L, et al. Reduction of dislocation density of SiC crystals grown on seeds after H2 etching[J]. 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), 2016: 1.
[33] YANG X L, CHEN X F, PENG Y, et al. Selective-area lateral epitaxial overgrowth of SiC by controlling the supersaturation in sublimation growth[J]. CrystEngComm, 2018, 20(12): 1705-1710.
[34] PENG Y, XU X G, HU X B, et al. Raman spectroscopic study of the electrical properties of 6H-SiC crystals grown by hydrogen-assisted physical vapor transport method[J]. Journal of Applied Physics, 2010, 107(9): 093519.
[35] HU X B, PENG Y, WEI R S, et al. Characterization of electrical properties of n-type 4H-SiC single crystals by Raman spectroscopy[J]. ECS Journal of Solid State Science and Technology, 2013, 2(8): N3022-N3024.
[36] FANTON M A, LI Q, POLYAKOV A Y, et al. Electrical properties and deep levels spectra of bulk SiC crystals grown by hybrid physical-chemical vapor transport method[J]. Journal of Crystal Growth, 2007, 300(2): 314-318.
[37] JENNY J R, MüLLER S G, POWELL A, et al. High-purity semi-insulating 4H-SiC grown by the seeded-sublimation method[J]. Journal of Electronic Materials, 2002, 31(5): 366-369.
[38] BICKERMANN M, WEINGARTNER R, WINNACKER A. On the preparation of vanadium doped PVT grown SiC boules with high semi-insulating yield[J]. Journal of Crystal Growth, 2003, 254(3/4): 390-399.
[39] SON N T, CARLSSON P, UL HASSAN J, et al. Defects and carrier compensation in semi-insulating 4H-SiC substrates[J]. Physical Review B, 2007, 75(15): 155204.
[40] NING L, HU X, CHEN X, et al. Growth of vanadium doped semi-insulating 6H-SiC[J]. Chinese Journal of Semiconductors, 2007, 28: 221-224.
[44] XIE X J, HU X B, CHEN X F, et al. Characterization of the three-dimensional residual stress distribution in SiC bulk crystals by neutron diffraction[J]. CrystEngComm, 2017, 19(43): 6527-6532.
[45] SUNG W, WANG J, HUANG A Q, et al. Design and investigation of frequency capability of 15 kV 4H-SiC IGBT[J]. 2009 21 st International Symposium on Power Semiconductor Devices & IC’S, 2009: 271-274.
[46] LARKIN D J. SiC dopant incorporation control using site-competition CVD[J]. Physica Status Solidi (b), 1997, 202(1): 305-320.
[47] VODAKOV Y A, LOMAKINA G A, MOKHOV E N, et al. Silicon carbide doped with gallium[J]. Physica Status Solidi (a), 1976, 35(1): 37-42.
[48] SUI Y, WALDEN G G, WANG X K, et al. Device options and design considerations for high-voltage (10-20 kV) SiC power switching devices[J]. Materials Science Forum, 2006, 527/528/529: 1449-1452.
[49] MLLER R, KNECKE U, WEINGRTNER R, et al. High Al-doping of SiC using a modified PVT (M-PVT) growth set-up[J]. Materials Science Forum, 2005, 483/484/485: 31-34.
[50] TOKUDA Y, KOJIMA J, HARA K, et al. 4H-SiC bulk growth using high-temperature gas source method [J]. Materials Science Forum, 2014, 778-780: 51-54.
[51] TOKUDA Y, HOSHINO N, KUNO H, et al. Fast 4H-SiC bulk growth by high-temperature gas source method [J]. Materials Science Forum, 2020, 1004: 5-13.
[52] OKAMOTO T, KANDA T, TOKUDA Y, et al. Development of 150-mm 4H-SiC substrates using a high-temperature chemical vapor deposition method[J]. Materials Science Forum, 2020, 1004: 14-19.
[53] HARADA S, YAMAMOTOB Y J, XIAO S, et al. Surface morphology and threading dislocation conversion behavior during solution growth of 4H-SiC using Si-Al solvent [J]. Materials Science Forum, 2014, 778-780: 67-70.
[54] KADO M, DAIKOKU H, SAKAMOTO H, et al. High-speed growth of 4H-SiC single crystal using Si-Cr based melt[J]. Materials Science Forum, 2013, 740/741/742: 73-76.
[55] YOSHIKAWA T, KAWANISHI S, MORITA K, et al. Investigation of solution growth of SiC by temperature difference method using Fe-Si solvent[J]. Materials Science Forum, 2013, 740/741/742: 31-34.
[56] KAWANISHI S, YOSHIKAWA T, MORITA K. Real-time observation of high temperature interface between SiC substrate and solution during dissolution of SiC[J]. Materials Science Forum, 2013, 740/741/742: 35-38.
[57] ALEXANDER, SEKI K, KOZAWA S, et al. Polytype stability of 4H-SiC seed crystal on solution growth[J]. Materials Science Forum, 2011, 679/680: 24-27.
[58] KOMATSU N, MITANI T, TAKAHASHI T, et al. Growth rate and surface morphology of 4H-SiC single crystal grown under various supersaturations using Si-C solution[J]. Materials Science Forum, 2013, 740/741/742: 23-26.
[59] DANNO K, YAMAGUCHI S, KIMOTO H, et al. Trials of solution growth of dislocation-free 4H-SiC bulk crystals[J]. Materials Science Forum, 2016, 858: 19-22.
[60] KUSUNOKI K, YASHIRO N, OKADA N, et al. Growth of large diameter 4H-SiC by TSSG technique[J]. Materials Science Forum, 2013, 740/741/742: 65-68.
[61] KUSUNOKI K, KISHIDA Y, SEKI K. Solution growth of 4-inch diameter SiC single crystal using Si-Cr based solvent[J]. Materials Science Forum, 2019, 963: 85-88.