• Matter and Radiation at Extremes
  • Vol. 10, Issue 2, 027202 (2025)
Shirui Xu1, Zhuo Pan1, Ying Gao1, Jiarui Zhao1..., Shiyou Chen1, Zhusong Mei1, Xun Chen1, Ziyang Peng1, Xuan Liu1, Yulan Liang1, Tianqi Xu1, Tan Song1, Qingfan Wu1, Yujia Zhang1, Zhipeng Liu1, Zihao Zhang1, Haoran Chen1, Qihang Han1, Jundong Shen1, Chenghao Hua1, Kun Zhu1, Yanying Zhao1, Chen Lin1, Xueqing Yan1,2,3,4 and Wenjun Ma1,2,3,4|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
  • 2Beijing Laser Acceleration Innovation Center, Huairou, Beijing 101400, China
  • 3Guangdong Institute of Laser Plasma Accelerator Technology, Guangzhou 510080, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi 030006, China
  • show less
    DOI: 10.1063/5.0255211 Cite this Article
    Shirui Xu, Zhuo Pan, Ying Gao, Jiarui Zhao, Shiyou Chen, Zhusong Mei, Xun Chen, Ziyang Peng, Xuan Liu, Yulan Liang, Tianqi Xu, Tan Song, Qingfan Wu, Yujia Zhang, Zhipeng Liu, Zihao Zhang, Haoran Chen, Qihang Han, Jundong Shen, Chenghao Hua, Kun Zhu, Yanying Zhao, Chen Lin, Xueqing Yan, Wenjun Ma. Diagnosis of focal spots at relativistic intensity utilizing coherent radiation from laser-driven flying electron sheets[J]. Matter and Radiation at Extremes, 2025, 10(2): 027202 Copy Citation Text show less
    References

    [1] M.Alkhimova, T.Pikuz, S.Ryazantsev, H.Sakaki, I.Skobelevet?al.. Ultrarelativistic Fe plasma with GJ/cm3 energy density created by femtosecond laser pulses. Matter Radiat. Extremes, 9, 067205(2024).

    [2] S. V.Bulanov, G. A.Mourou, T.Tajima. Optics in the relativistic regime. Rev. Mod. Phys., 78, 309-371(2006).

    [3] E.Esarey, W. P.Leemans, C. B.Schroeder. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys., 81, 1229-1285(2009).

    [4] M.Borghesi, A.Macchi, M.Passoni. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751-793(2013).

    [5] S.Assenbaum, C.Bernert, F.-E.Brack, I.Göthel, T.Ziegleret?al.. Laser-driven high-energy proton beams from cascaded acceleration regimes. Nat. Phys., 20, 1211-1216(2024).

    [6] T. G.Blackburn, S. S.Bulanov, A.Gonoskov, M.Marklund. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys., 94, 045001(2022).

    [7] A.Di Piazza, K. Z.Hatsagortsyan, C. H.Keitel, C.Müller. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177-1228(2012).

    [8] J.Bromage, T.Butcher, J. C. F.Chanteloup, C. N.Danson, C.Haefneret?al.. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng., 7, e54(2019).

    [9] I. W.Choi, Y. G.Kim, H. W.Lee, J. H.Sung, J. W.Yoonet?al.. Realization of laser intensity over 1023 W/cm2. Optica, 8, 630-635(2021).

    [10] A.Borot, V.Gallet, O.Gobert, G.Pariente, F.Quéré. Space-time characterization of ultra-intense femtosecond laser beams. Nat. Photonics, 10, 547-553(2016).

    [11] J.Gao. Laser intensity measurement by Thomson scattering. Appl. Phys. Lett., 88, 091105(2006).

    [12] M.de Marco, C. Z.He, A.Longman, J. A.Pérez-Hernández, C.Salgadoet?al.. Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers. Opt Express, 27, 30020-30030(2019).

    [13] A.Di Piazza, O.Har-Shemesh. Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering. Opt Lett., 37, 1352-1354(2012).

    [14] C. N.Harvey. In situ characterization of ultraintense laser pulses. Phys. Rev. Acc. Beams, 21, 114001(2018).

    [15] V. Y.Bychenkov, O. E.Vais. Direct electron acceleration for diagnostics of a laser pulse focused by an off-axis parabolic mirror. Appl. Phys. B, 124, 211(2018).

    [16] C. Z.He, M.Huault, R.Lera, A.Longman, S.Ravichandranet?al.. Imaging electron angular distributions to assess a full-power petawatt-class laser focus. Phys. Rev. A, 108, 053101(2023).

    [17] C. Z.He, R.Lera, A.Longman, L.Manzo, S.Ravichandranet?al.. Toward direct spatial and intensity characterization of ultra-high-intensity laser pulses using ponderomotive scattering of free electrons. Phys. Plasmas, 30, 082110(2023).

    [18] A.Andreev, A.Galkin, K.Ivanov, M.Kalashnikov, V.Korobkinet?al.. Diagnostics of peak laser intensity based on the measurement of energy of electrons emitted from laser focal region. Laser Part. Beams, 33, 361-366(2015).

    [19] X. D.Hou, Z. W.Lu, C.Lv, Y. I.Salamin, F.Wanet?al.. Diagnosis of ultrafast ultraintense laser pulse characteristics by machine-learning-assisted electron spin. Matter Radiat. Extremes, 8, 034401(2023).

    [20] V. Y.Bychenkov, K.Krushelnick, A. M.Maksimchuk, A. G. R.Thomas, O. E.Vais. Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas. New J. Phys., 22, 023003(2020).

    [21] N. D.Bukharskii, V. Y.Bychenkov, P. A.Korneev, O. E.Vais. Restoration of the focal parameters for an extreme-power laser pulse with ponderomotively scattered proton spectra by using a neural network algorithm. Matter Radiat. Extremes, 8, 014404(2023).

    [22] S. V.Bulanov, M. F.Ciappina, T.Ditmire, G.Korn, S. V.Popruzhenkoet?al.. Progress toward atomic diagnostics of ultrahigh laser intensities. Phys. Rev. A, 99, 043405(2019).

    [23] M. F.Ciappina, E. E.Peganov, S. V.Popruzhenko. Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities. Matter Radiat. Extremes, 5, 044401(2020).

    [24] I. A.Aleksandrov, A. A.Andreev. Pair production seeded by electrons in noble gases as a method for laser intensity diagnostics. Phys. Rev. A, 104, 052801(2021).

    [25] S. E.Perevalov, A. M.Pukhov, A. A.Soloviev, M. V.Starodubtsev. Laser peeler regime of high-harmonic generation for diagnostics of high-power focused laser pulses. Matter Radiat. Extremes, 8, 034402(2023).

    [26] F.Amiranoff, S. D.Baton, L.Gremillet, M.Koenig, J. J.Santoset?al.. Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics. Phys. Rev. Lett., 89, 025001(2002).

    [27] F.Amiranoff, S. D.Baton, L.Gremillet, H.Popescu, J. J.Santoset?al.. Evidence of ultrashort electron bunches in laser–plasma interactions at relativistic intensities. Phys. Rev. Lett., 91, 105001(2003).

    [28] T.Kurahashi, T.Sato, K. A.Tanaka, T.Yabuuchi, J.Zhenget?al.. Study of hot electrons by measurement of optical emission from the rear surface of a metallic foil irradiated with ultraintense laser pulse. Phys. Rev. Lett., 92, 165001(2004).

    [29] F.Amiranoff, S. D.Baton, M. R.Le Gloahec, H.Popescu, C.Rousseauxet?al.. Subfemtosecond, coherent, relativistic, and ballistic electron bunches generated at ω and 2ω in high intensity laser-matter interaction. Phys. Plasmas, 12, 063106(2005).

    [30] A. C.Bernstein, B. I.Cho, G. M.Dyer, A.Karmakar, J.Osterholzet?al.. Characterization of two distinct, simultaneous hot electron beams in intense laser-solid interactions. Phys. Rev. E, 80, 055402(2009).

    [31] Z. X.Cao, J. B.Liu, Y. R.Shou, D. H.Wang, P. J.Wanget?al.. High-efficiency generation of narrowband soft X rays from carbon nanotube foams irradiated by relativistic femtosecond lasers. Opt Lett., 46, 3969-3972(2021).

    [32] K.Estabrook, W. L.Kruer. J × B heating by very intense laser light. Phys. Fluids, 28, 430-432(1985).

    [33] F.Brunel. Not-so-resonant, resonant absorption. Phys. Rev. Lett., 59, 52-55(1987).

    [34] K.Estabrook, W. L.Kruer. Properties of resonantly heated electron distributions. Phys. Rev. Lett., 40, 42-45(1978).

    [35] T. D.Arber, K.Bennett, C. S.Brady, A.Lawrence-Douglas, M. G.Ramsayet?al.. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).

    [36] Y.Kitagawa, R.Kodama, T.Miyakoshi, K. A.Tanaka, J.Zhenget?al.. Theoretical study of transition radiation from hot electrons generated in the laser-solid interaction. Phys. Plasmas, 10, 2994-3003(2003).

    [37] E.Esarey, W. P.Leemans, C. B.Schroeder, J.van Tilborg. Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E, 69, 016501(2004).

    [38] C.Bellei, P. K.Chauhan, J. R.Davies, Z.Najmudin. Coherent transition radiation in relativistic laser–solid interactions. Plasma Phys. Controlled Fusion, 54, 035011(2012).

    [39] G.Bonnaud, S.Kahaly, P.Martin, S.Monchocé, H.Vincentiet?al.. Optical properties of relativistic plasma mirrors. Nat. Commun., 5, 3403(2014).

    [40] Z.Ren, L.Song, C.Wang, K.Wang, G.Zhaoet?al.. On the use of deep learning for phase recovery. Light Sci. Appl., 13, 4(2024).

    Shirui Xu, Zhuo Pan, Ying Gao, Jiarui Zhao, Shiyou Chen, Zhusong Mei, Xun Chen, Ziyang Peng, Xuan Liu, Yulan Liang, Tianqi Xu, Tan Song, Qingfan Wu, Yujia Zhang, Zhipeng Liu, Zihao Zhang, Haoran Chen, Qihang Han, Jundong Shen, Chenghao Hua, Kun Zhu, Yanying Zhao, Chen Lin, Xueqing Yan, Wenjun Ma. Diagnosis of focal spots at relativistic intensity utilizing coherent radiation from laser-driven flying electron sheets[J]. Matter and Radiation at Extremes, 2025, 10(2): 027202
    Download Citation