• Geographical Research
  • Vol. 39, Issue 3, 749 (2020)
Yiyuan LIU1、1, Peng LI2、2、3、3, Chiwei XIAO2、2、3、3, Ying LIU1、1, and Didi RAO2、2、3、3
Author Affiliations
  • 1College of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
  • 1江西师范大学地理与环境学院,南昌 330022
  • 2Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2中国科学院地理科学与资源研究所,北京 100101
  • 3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3中国科学院大学资源与环境学院,北京 100049
  • show less
    DOI: 10.11821/dlyj020190029 Cite this Article
    Yiyuan LIU, Peng LI, Chiwei XIAO, Ying LIU, Didi RAO. Characteristics analyses of major physical geographic elements of Visible Infrared Imaging Radiometer (VIIRS) active fire in Laos[J]. Geographical Research, 2020, 39(3): 749 Copy Citation Text show less
    References

    [1] Lentile L B, Holden Z A, Smith A M S et al. Remote sensing techniques to assess active fire characteristics and post-fire effects[D]. International Journal of Wildland Fire, 15, 319-345(2006).

    [2] Choromanska U, Deluca T H. Microbial activity and nitrogen mineralization in forest mineral soils following heating: Evaluation of post-fire effects[D]. Soil Biology & Biochemistry, 34, 263-271(2002).

    [3] Ahlgren I F, Ahlgren C E. Ecological effects of forest[D]. Botanical Review, 26, 484-533(1960).

    [4] Mchugh C W, Kolb T E. Ponderosa pine mortality following fire in northern Arizona[D]. International Journal of Wildland Fire, 12, 7-22(2003).

    [5] Dahm C N, Candelaria-Ley R I, Reale C S et al. Extreme water quality degradation following a catastrophic forest fire[D]. Freshwater Biology, 60, 2584-2599(2015).

    [6] Le T H, Thanh Nguyen T N, Lasko K et al. Vegetation fires and air pollution in Vietnam[D]. Environmental Pollution, 195, 267-275(2014).

    [7] Smith A M S, Wooster M J, Drake N A et al. Fire in African savanna: Testing the impact of incomplete combustion on pyrogenic emissions estimates[D]. Ecological Applications, 15, 1074-1082(2005).

    [8] Ulevicius V, Byčenkienė S, Remeikis V et al. Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions[D]. Atmospheric Research, 98, 190-200(2010).

    [9] Waigl C F, Stuefer M, Prakash A et al. Detecting high and low-intensity fires in Alaska using VIIRS I-band data: An improved operational approach for high latitudes[D]. Remote Sensing of Environment, 199, 389-400(2017).

    [10] Ellicott E, Vermote E, Giglio L et al. Estimating biomass consumed from fire using MODIS FRE[D]. Geophysical Research Letters, 36, 88-97(2009).

    [11] Jordan N S, Ichoku C, Hoff R M. Estimating smoke emissions over the U.S southern great plains using MODIS fire radiative energy (FRE) measurements[D]. Atmospheric Environment, 42, 2007-2022(2008).

    [12] Henderson S, Burkholder B, Jackson P et al. Use of MODIS products to simplify and evaluate a forest fire plume dispersion model for PM10 exposure assessment[D]. Atmospheric Environment, 42, 8524-8532(2008).

    [13] Yaduvanshi A, Srivastava P K, Pandey A K. Integrating TRMM and MODIS satellite with socio-economic vulnerability for monitoring drought risk over a tropical region of India[D]. Physics and Chemistry of the Earth, 83-84, 14-27(2015).

    [14] Vadrevu K, Lasko K. Intercomparison of MODIS AQUA and VIIRS I-band fires and emissions in an agricultural landscape: Implications for air pollution research[D]. Remote Sensing, 10, 978-995(2018).

    [15] Voulgarakis A, Field R D. Fire influences on atmospheric composition, air quality and climate[D]. Current Pollution Reports, 1, 70-81(2015).

    [16] Forsythe N, Kilsby C G, Fowler H J et al. Assessment of runoff sensitivity in the upper indus basin to interannual climate variability and potential change using MODIS satellite data products[D]. Mountain Research and Development, 32, 16-29(2012).

    [17] Li P, Feng Z M, Xiao C W et al. Detecting and mapping annual newly-burned plots (NBP) of swiddening using historical Landsat data in Montane Mainland Southeast Asia (MMSEA) during 1988-2016[D]. Journal of Geographical Sciences, 28, 1307-1328(2018).

    [18] Li P, Feng Z M. Extent and area of swidden in Montane Mainland Southeast Asia: estimation by multi-step thresholds with Landsat-8 OLI data[D]. Remote Sensing, 8, 44-63(2016).

    [19] Liao C H, Feng Z M, Li P et al. Monitoring the spatio-temporal dynamics of swidden agriculture and fallow vegetation recovery using Landsat imagery in northern Laos[D]. Journal of Geographical Sciences, 25, 1218-1234(2015).

    [20] Li P, Feng Z M. Monitoring phenological stages of swiddening in northern Laos during the dry season[D]. International Society for Optics and Photonics, 9260(2014).

    [21] Müller D, Suess S, Hoffmann A A et al. The value of satellite-based active fire data for monitoring, reporting and verification of REDD+ in the Lao PDR[D]. Human Ecology, 41, 7-20(2013).

    [22] Schroeder W, Oliva P, Giglio L et al. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment[D]. Remote Sensing of Environment, 143, 85-96(2014).

    [23] Tachikawa T, Hato M, Kaku M et al. The characteristics of ASTER GDEM Version 2. In: IEEE. IGARSS 2011 Symposium, Vancouver, Canada: IEEE, 24-29(2011).

    [25] Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover, and leaf area index[D]. Remote Sensing of Environment, 62, 241-252(1997).

    Yiyuan LIU, Peng LI, Chiwei XIAO, Ying LIU, Didi RAO. Characteristics analyses of major physical geographic elements of Visible Infrared Imaging Radiometer (VIIRS) active fire in Laos[J]. Geographical Research, 2020, 39(3): 749
    Download Citation