• Chinese Journal of Lasers
  • Vol. 49, Issue 13, 1311003 (2022)
Yuanxia Fu1、2, Ren Jia1, Peng Xu1, Ling Xue1, Guanxin Yao1、3, Xianfeng Zheng1、3, Zhengbo Qin1、3, Xinyan Yang1、3, and Zhifeng Cui1、3、*
Author Affiliations
  • 1College of Physics and Electronic Information, Anhui Normal University, Wuhu 240002, Anhui , China
  • 2Department of Science, Bengbu University, Bengbu 233030, Anhui , China
  • 3Key Laboratory of Photoelectric Materials Science and Technology of Anhui Province, Wuhu 240002, Anhui , China
  • show less
    DOI: 10.3788/CJL202249.1311003 Cite this Article Set citation alerts
    Yuanxia Fu, Ren Jia, Peng Xu, Ling Xue, Guanxin Yao, Xianfeng Zheng, Zhengbo Qin, Xinyan Yang, Zhifeng Cui. An Exploration of Matrix Effect on Optimal Defocus Distance of Metal Matrix in Laser-Induced Breakdown Spectroscopy[J]. Chinese Journal of Lasers, 2022, 49(13): 1311003 Copy Citation Text show less
    References

    [1] Riebe D, Erler A, Brinkmann P et al. Comparison of calibration approaches in laser-induced breakdown spectroscopy for proximal soil sensing in precision agriculture[J]. Sensors, 19, 5244(2019).

    [2] Zivkovic S, Savovic J, Kuzmanovic M et al. Alternative analytical method for direct determination of Mn and Ba in peppermint tea based on laser induced breakdown spectroscopy[J]. Microchemical Journal, 137, 410-417(2018).

    [3] Yu J L, Li C, Yao G X et al. Spatial evolution characteristics of laser-induced plasma in liquid matrix[J]. Chinese Journal of Lasers, 46, 0802001(2019).

    [4] Boudhib M, Hermann J, Dutouquet C. Compositional analysis of aerosols using calibration-free laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 88, 4029-4035(2016).

    [5] Buschbeck M, Büchler F, Halfmann T et al. Laser-induced breakdown spectroscopy for lambda quantification in a direct-injection engine[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 74/75, 103-108(2012).

    [6] Balika L, Focsa C, Gurlui S et al. Laser-induced breakdown spectroscopy in a running Hall Effect Thruster for space propulsion[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 74/75, 184-189(2012).

    [7] Martin M Z, Allman S, Brice D J et al. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in situ applications[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 74/75, 177-183(2012).

    [8] Sha W, Li J T, Lu C P. Quantitative analysis of Mn in soil based on laser-induced breakdown spectroscopy optimization[J]. Chinese Journal of Lasers, 47, 0511001(2020).

    [9] Zhao N, Li J M, Ma Q X et al. Periphery excitation of laser-induced CN fluorescence in plasma using laser-induced breakdown spectroscopy for carbon detection[J]. Chinese Optics Letters, 18, 083001(2020).

    [10] de Lucia F C Jr, Gottfried J L. Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy[J]. Applied Optics, 51, B83-B92(2012).

    [11] Urbina I, Carneiro D, Rocha S et al. Measurement of atomic transition probabilities with laser-induced breakdown spectroscopy using the 3D Boltzmann plot method[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 154, 91-96(2019).

    [12] Busser B, Moncayo S, Coll J L et al. Elemental imaging using laser-induced breakdown spectroscopy: a new and promising approach for biological and medical applications[J]. Coordination Chemistry Reviews, 358, 70-79(2018).

    [13] Pan L J, Chen W F, Zhou Y F et al. Parameter optimization of laser-induced breakdown spectroscopy experimental device based on response surface methodology[J]. Chinese Journal of Lasers, 47, 0911001(2020).

    [14] Jabbar A, Akhtar M, Ali A et al. Elemental composition of rice using calibration free laser induced breakdown spectroscopy[J]. Optoelectronics Letters, 15, 57-63(2019).

    [15] Vrenegor J, Noll R, Sturm V. Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 1083-1091(2005).

    [16] Windom B C, Hahn D W. Laser ablation: laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response[J]. Journal of Analytical Atomic Spectrometry, 24, 1665-1675(2009).

    [17] Lepore K H, Fassett C I, Breves E A et al. Matrix effects in quantitative analysis of laser-induced breakdown spectroscopy (LIBS) of rock powders doped with Cr, Mn, Ni, Zn, and Co[J]. Applied Spectroscopy, 71, 600-626(2017).

    [18] Boulmer-Leborgne C, Hermann J, Dubreuil B. Plasma formation resulting from the interaction of a laser beam with a solid metal target in an ambient gas[J]. Plasma Sources Science and Technology, 2, 219-226(1993).

    [19] Autrique D, Clair G, L’Hermite D et al. The role of mass removal mechanisms in the onset of ns-laser induced plasma formation[J]. Journal of Applied Physics, 114, 023301(2013).

    [20] Kundrapu M, Keidar M. Laser ablation of metallic targets with high fluences: self-consistent approach[J]. Journal of Applied Physics, 105, 083302(2009).

    [21] Lutey A H A. An improved model for nanosecond pulsed laser ablation of metals[J]. Journal of Applied Physics, 114, 083108(2013).

    [22] Fang R R, Zhang D M, Li Z H et al. Improved thermal model and its application in UV high-power pulsed laser ablation of metal target[J]. Solid State Communications, 145, 556-560(2008).

    [23] Stafe M. Theoretical photo-thermo-hydrodynamic approach to the laser ablation of metals[J]. Journal of Applied Physics, 112, 123112(2012).

    [24] Mele A, Guidoni A G, Kelly R et al. Laser ablation of metals: analysis of surface-heating and plume-expansion experiments[J]. Applied Surface Science, 109/110, 584-590(1997).

    [25] Vadillo J M, García C C, Alcántara J F et al. Thermal-to-plasma transitions and energy thresholds in laser ablated metals monitored by atomic emission/mass spectrometry coincidence analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 948-954(2005).

    [26] Gupta G P, Suri B M. Vapour and plasma ignition thresholds for visible pulsed-laser ablation of metallic targets[J]. Applied Surface Science, 230, 398-403(2004).

    [27] Lorusso A, Nassisi V, Buccolieri A et al. Laser ablation threshold of cultural heritage metals[J]. Radiation Effects and Defects in Solids, 163, 325-329(2008).

    [28] Labutin T A, Popov A M, Lednev V N et al. Correlation between properties of a solid sample and laser-induced plasma parameters[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 938-949(2009).

    [29] Clarke P, Dyer P E, Key P H et al. Plasma ignition thresholds in UV laser ablation plumes[J]. Applied Physics A, 69, S117-S120(1999).

    [30] Geertsen C, Briand A, Chartier F et al. Comparison between infrared and ultraviolet laser ablation at atmospheric pressure: implications for solid sampling inductively coupled plasma spectrometry[J]. Journal of Analytical Atomic Spectrometry, 9, 17-22(1994).

    [31] Cabalín L M, Laserna J J. Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 53, 723-730(1998).

    [32] Jia R, Fu Y X, Xu P et al. Influence of metal property on the optimized experimental parameters of laser induced breakdown spectroscopy[J]. Journal of Atomic and Molecular Physics, 37, 728-733(2020).

    [33] Lide D R[M]. Handbook of chemistry and physics(2004).

    [34] Adachi S[M]. The handbook on optical constants of metals(2012).

    [35] Hubbell J H. Photon mass attenuation and energy-absorption coefficients from 1 KeV to 20 MeV[J]. The International Journal of Applied Radiation and Isotopes, 33, 1269-1290(1982).

    [36] Wehenkel C, Gauthé B. Optical absorption coefficient of nickel, palladium platinum and copper, silver, gold between 20 and 120 eV[J]. Optics Communications, 11, 62-63(1974).

    Yuanxia Fu, Ren Jia, Peng Xu, Ling Xue, Guanxin Yao, Xianfeng Zheng, Zhengbo Qin, Xinyan Yang, Zhifeng Cui. An Exploration of Matrix Effect on Optimal Defocus Distance of Metal Matrix in Laser-Induced Breakdown Spectroscopy[J]. Chinese Journal of Lasers, 2022, 49(13): 1311003
    Download Citation