• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101006 (2022)
Xian Feng*, Zhiyong Yang**, and Jindan Shi***
Author Affiliations
  • Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
  • show less
    DOI: 10.3788/CJL202249.0101006 Cite this Article Set citation alerts
    Xian Feng, Zhiyong Yang, Jindan Shi. Progress in Chalcogenide Glass Photonic Crystal Fibers with Ultra-Large Mode Area[J]. Chinese Journal of Lasers, 2022, 49(1): 0101006 Copy Citation Text show less
    References

    [1] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [2] Yao Y, Hoffman A J, Gmachl C F. Mid-infrared quantum cascade lasers[J]. Nature Photonics, 6, 432-439(2012).

    [3] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [4] Mirov S B, Fedorov V V, Martyshkin D et al. Progress in mid-IR lasers based on Cr and Fe-doped IIVI chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 292-310(2015).

    [5] Nunes J J, Sojka, Crane R W et al. Room temperature mid-infrared fiber lasing beyond 5 μm in chalcogenide glass small-core step index fiber[J]. Optics Letters, 46, 3504-3507(2021).

    [6] Feng X, Poletti F, Camerlingo A et al. Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths[J]. Optical Fiber Technology, 16, 378-391(2010).

    [7] Sato S, Igarashi K, Taniwaki M et al. Multihundred-watt CO laser power delivery through chalcogenide glass fibers[J]. Applied Physics Letters, 62, 669-671(1993).

    [8] Blanchetière C, le Foulgoc K, Ma H L et al. Tellurium halide glass fibers: preparation and applications[J]. Journal of Non-Crystalline Solids, 184, 200-203(1995).

    [9] Sanghera J S, Aggarwal I D, Shaw L B et al. Applications of chalcogenide glass optical fibers at NRL[J]. Journal of Optoelectronics and Advanced Materials, 3, 627-640(2001).

    [10] Sincore A, Cook J, Tan F A et al. Practical limits of power transmission through single-mode chalcogenide fibers[J]. Optical Engineering, 57, 111807(2018).

    [11] Sincore A, Cook J, Tan F et al. High power single-mode delivery of mid-infrared sources through chalcogenide fiber[J]. Optics Express, 26, 7313-7323(2018).

    [12] Su J X, Dai S X, Jiang L et al. Fabrication and bending strength analysis of low-loss Ge15As25Se40Te20 chalcogenide glass fiber: a potential mid-infrared laser transmission medium[J]. Optical Materials Express, 9, 2859-2869(2019).

    [13] Bernier M, Fortin V, Caron N et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 38, 127-129(2013).

    [14] Hu K, Kabakova I V, Büttner T F S et al. Low-threshold Brillouin laser at 2 μm based on suspended-core chalcogenide fiber[J]. Optics Letters, 39, 4651-4654(2014).

    [15] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.413.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014).

    [16] Yu Y, Zhang B, Gai X et al. 1.810 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power[J]. Optics Letters, 40, 1081-1084(2015).

    [17] Martinez R A, Plant G, Guo K W et al. Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers[J]. Optics Letters, 43, 296-299(2018).

    [18] Jiao K, Yao J M, Wang X G et al. 1.215.2 μm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region[J]. Optics Letters, 44, 5545-5548(2019).

    [19] Zhang M J, Li L, Li T T et al. Mid-infrared supercontinuum generation in chalcogenide fibers with high laser damage threshold[J]. Optics Express, 27, 29287-29296(2019).

    [20] Qi S, Zhang B, Zhai C et al. High-resolution chalcogenide fiber bundles for longwave infrared imaging[J]. Optics Express, 25, 26160-26165(2017).

    [21] Ventura A, Slimen F B, Lousteau J et al. Flexible Mid-IR fiber bundle for thermal imaging of inaccessible areas[J]. Optics Express, 27, 20259-20272(2019).

    [22] Zhou W J, Lu Q Y, Wu D H et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm[J]. Optics Express, 27, 15776-15785(2019).

    [23] SBIR.GOV. High-power mid-infrared quantum cascade laser array with continuous-wave output power exceeding 100 W[EB/OL]. https:∥www.sbir.gov/sbirsearch/detail/696063

    [24] SBIR.GOV. High-power mid-infrared quantum cascade laser array with continuous-wave output power exceeding 100 W[EB/OL]. https:∥www.sbir.gov/sbirsearch/detail/1160125

    [25] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 78, 1135-1184(2006).

    [26] Shaw L B, Nguyen V Q, Sanghera J S et al. IR supercontinuum generation in As-Se photonic crystal fiber[C], 864(2005).

    [27] Robichaud L R, Duval S, Pleau L P et al. High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source[J]. Optics Express, 28, 107-115(2020).

    [28] Carter A, Samson B N, Tankala K et al. Damage mechanisms in components for fiber lasers and amplifiers[J]. Proceedings of SPIE, 5647, 561-571(2005).

    [29] Smith A V, Do B T. Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm[J]. Applied Optics, 47, 4812-4832(2008).

    [30] Gaida C, Gebhardt M, Stutzki F et al. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power[J]. Optics Letters, 41, 4130-4133(2016).

    [31] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [32] Liu K, Liu J, Shi H et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 22, 24384-24391(2014).

    [33] Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 40, 4226-4228(2015).

    [34] Li Z, Jia Z, Yao C et al. 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers[J]. Optics Letters, 45, 1882-1885(2020).

    [35] Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 5, 1264-1270(2018).

    [36] Zhang M J, Li T T, Yang Y et al. Femtosecond laser induced damage on Ge-As-S chalcogenide glasses[J]. Optical Materials Express, 9, 555-561(2019).

    [37] Wang X L, Zhang H W, Yang B L et al. High-power ytterbium-doped fiber laser oscillator current situation and future developments[J]. Chinese Journal of Lasers, 48, 0401004(2021).

    [38] Eidam T, Rothhardt J, Stutzki F et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 19, 255-260(2010).

    [39] Russell P. Photonic crystal fibers[J]. Science, 299, 358-362(2003).

    [40] Stutzki F, Jansen F, Liem A et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality[J]. Optics Letters, 37, 1073-1075(2012).

    [41] Steinkopff A, Jauregui C, Stutzki F et al. Transverse single-mode operation in a passive large pitch fiber with more than 200 μm mode-field diameter[J]. Optics Letters, 44, 650-653(2019).

    [42] Klenke A, Breitkopf S, Kienel M et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 38, 2283-2285(2013).

    [43] Conseil C, Coulombier Q, Boussard-Plédel C et al. Chalcogenide step index and microstructured single mode fibers[J]. Journal of Non-Crystalline Solids, 357, 2480-2483(2011).

    [44] Yi C S, Dai S X, Zhang P Q et al. Design of a novel single-mode large mode area infrared chalcogenide glass photonic crystal fibers[J]. Acta Physica Sinica, 62, 084206(2013).

    [45] Ren H, Qi S, Hu Y et al. All-solid mid-infrared chalcogenide photonic crystal fiber with ultralarge mode area[J]. Optics Letters, 44, 5553-5556(2019).

    [46] Feng X, Ren H, Xu F et al. Few-moded ultralarge mode area chalcogenide photonic crystal fiber for mid-infrared high power applications[J]. Optics Express, 28, 16658-16672(2020).

    [47] Feng X, Monro T M, Petropoulos P et al. Solid microstructured optical fiber[J]. Optics Express, 11, 2225-2230(2003).

    [48] Baggett J C, Monro T M, Furusawa K et al. Understanding bending losses in holey optical fibers[J]. Optics Communications, 227, 317-335(2003).

    [49] Dong L, Peng X, Li J. Leakage channel optical fibers with large effective area[J]. Journal of the Optical Society of America B, 24, 1689-1697(2007).

    [50] Schott Glass. TIE-26: homogeneity of optical glass[EB/OL]. https:∥wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/tie-26_homogeneity_of_optical_glass_us.pdf

    [51] Hu L L, Chen S B, Tang J P et al. Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility[J]. High Power Laser Science and Engineering, 2, e1(2014).

    [52] Heraeus-quarzglas. Quartz glass for optics data and properties[EB/OL]. https:∥www.heraeus.com/en/hca/fused_silica_1/home_hca.html

    [53] Jansen F, Stutzki F, Otto H J et al. Thermally induced waveguide changes in active fibers[J]. Optics Express, 20, 3997-4008(2012).

    Xian Feng, Zhiyong Yang, Jindan Shi. Progress in Chalcogenide Glass Photonic Crystal Fibers with Ultra-Large Mode Area[J]. Chinese Journal of Lasers, 2022, 49(1): 0101006
    Download Citation