• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101012 (2022)
Weiyi Sun1、5, Jiapeng Huang1、2、4、*, Liming Chen2, Zhiyuan Huang1, Wenbin He2, Xin Jiang2、3, Meng Pang1、2、3、**, and Yuxin Leng1、3、***
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
  • 2Innovation and Integration Center of New Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
  • 3School of Physics and Opto-Electronic Engineering, Hangzhou Institute for Advanced Study, Chinese Academy of Sciences, Hangzhou, Zhejiang 310013, China;
  • 4Department of Electrical Engineering, Hong Kong Polytechnic University, Hong Kong, China;
  • 5School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
  • show less
    DOI: 10.3788/CJL202249.0101012 Cite this Article Set citation alerts
    Weiyi Sun, Jiapeng Huang, Liming Chen, Zhiyuan Huang, Wenbin He, Xin Jiang, Meng Pang, Yuxin Leng. Design of a 10 W Level Dispersion-Managed High-Power Ultrafast Mid-Infrared Fiber Laser System[J]. Chinese Journal of Lasers, 2022, 49(1): 0101012 Copy Citation Text show less
    References

    [1] Pantawane M V, Robertson W B, Khan R J K et al. Fundamentals of three-dimensional Yb-fiber Nd: YAG laser machining of structural bone[J]. Journal of Applied Physics, 126, 124901(2019).

    [2] Amini-Nik S, Kraemer D, Cowan M L et al. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery[J]. PLoS One, 5, e13053(2010).

    [3] Waynant R W, Ilev I K, Gannot I. Mid-infrared laser applications in medicine and biology[J]. Philosophical Transactions of the Royal Society of London Series A, 359, 635-644(2001).

    [4] Popa D, Udrea F. Towards integrated mid-infrared gas sensors[J]. Sensors, 19, 2076(2019).

    [5] Chen J, Nitta K, Zhao X et al. Adaptive-sampling near-Doppler-limited terahertz dual-comb spectroscopy with a free-running single-cavity fiber laser[J]. Advanced Photonics, 2, 036004(2020).

    [6] Haas J, Mizaikoff B. Advances in mid-infrared spectroscopy for chemical analysis[J]. Annual Review of Analytical Chemistry, 9, 45-68(2016).

    [7] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [8] Hugi A, Terazzi R, Bonetti Y et al. External cavity quantum cascade laser tunable from 7.6 to 11.4 μm[J]. Applied Physics Letters, 95, 061103(2009).

    [9] Thompson N R, Dunning D J, Clarke J A et al. First lasing of the ALICE infra-red free-electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A, 680, 117-123(2012).

    [10] Whittaker K E, Ciaffoni L, Hancock G et al. A DFG-based cavity ring-down spectrometer for trace gas sensing in the mid-infrared[J]. Applied Physics B, 109, 333-343(2012).

    [11] Leindecker N, Marandi A, Byer R L et al. Broadband degenerate OPO for mid-infrared frequency comb generation[J]. Optics Express, 19, 6296-6302(2011).

    [12] Li B W, Wu J M, Xu M H et al. Study on widely tunable mid-infrared difference-frequency generation based on passive synchronization[J]. Chinese Journal of Lasers, 47, 1115001(2020).

    [13] Maine P, Strickland D, Bado P et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 24, 398-403(1988).

    [14] Wang P, Huang J P, Xie S R et al. Broadband mid-infrared supercontinuum generation in dispersion-engineered As2S3-silica nanospike waveguides pumped by 2.8 μm femtosecond laser[J]. Photonics Research, 9, 630-636(2021).

    [15] Wang F, Pistore V, Riesch M et al. Ultrafast response of harmonic modelocked THz lasers[J]. Light: Science & Applications, 9, 51(2020).

    [16] Wang F H, Maussang K, Moumdji S et al. Generating ultrafast pulses of light from quantum cascade lasers[J]. Optica, 2, 944-949(2015).

    [17] Feng X, Shi J, Segura M et al. Halo-tellurite glass fiber with low OH content for 25 μm mid-infrared nonlinear applications[J]. Optics Express, 21, 18949-18954(2013).

    [18] Jia Z X, Yao C F, Li Z R et al. Progress on novel high power mid-infrared fiber laser materials and supercontinuum laser[J]. Chinese Journal of Lasers, 46, 0508006(2019).

    [19] Xia C, Kumar M, Kulkarni O P et al. Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping[J]. Optics Letters, 31, 2553-2555(2006).

    [20] Sanghera J S, Shaw L B, Aggarwal I D. Chalcogenide glass-fiber-based mid-IR sources and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 114-119(2009).

    [21] Dai S X, Wang M, Wang Y Y et al. Review of mid-infrared supercontinuum spectrum generation based on chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 57, 071603(2020).

    [22] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [23] Qin Z P, Xie G Q, Gu H et al. Mode-locked 2.8-μm fluoride fiber laser: from soliton to breathing pulse[J]. Advanced Photonics, 1, 065001(2019).

    [24] Huang J, Pang M, Jiang X et al. Sub-two-cycle octave-spanning mid-infrared fiber laser[J]. Optica, 7, 574-579(2020).

    [25] Duval S, Gauthier J C, Robichaud L R et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm[J]. Optics Letters, 41, 5294-5297(2016).

    [26] Tegin U, Rahmani B, Kakkava E et al. Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2, 056005(2020).

    [27] Eidam T, Rothhardt J, Stutzki F et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 19, 255-260(2010).

    [28] Pollnau M, Spring R, Ghisler C et al. Efficiency of erbium 3-μm crystal and fiber lasers[J]. IEEE Journal of Quantum Electronics, 32, 657-663(1996).

    [29] Huang J, Pang M, Jiang X et al. Route from single-pulse to multi-pulse states in a mid-infrared soliton fiber laser[J]. Optics Express, 27, 26392-26404(2019).

    [30] Shen Y, Wang Y, Chen H et al. Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser[J]. Scientific Reports, 7, 14913(2017).

    [31] Antipov S, Hudson D D, Fuerbach A et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window[J]. Optica, 3, 1373(2016).

    [32] Song Y F, Wang Z H, Wang C et al. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives[J]. Advanced Photonics, 2, 024001(2020).

    [33] Blow K J, Wood D. Theoretical description of transient stimulated Raman scattering in optical fibers[J]. IEEE Journal of Quantum Electronics, 25, 2665-2673(1989).

    [34] Treacy E. Optical pulse compression with diffraction gratings[J]. IEEE Journal of Quantum Electronics, 5, 454-458(1969).

    Weiyi Sun, Jiapeng Huang, Liming Chen, Zhiyuan Huang, Wenbin He, Xin Jiang, Meng Pang, Yuxin Leng. Design of a 10 W Level Dispersion-Managed High-Power Ultrafast Mid-Infrared Fiber Laser System[J]. Chinese Journal of Lasers, 2022, 49(1): 0101012
    Download Citation