• High Power Laser Science and Engineering
  • Vol. 8, Issue 1, 010000e1 (2020)
Ning Ma, Meng Chen*, Ce Yang, Shang Lu, Xie Zhang, and Xinbiao Du
Author Affiliations
  • Institute of Laser Engineering, Beijing University of Technology, Beijing100124, China
  • show less
    DOI: 10.1017/hpl.2020.2 Cite this Article Set citation alerts
    Ning Ma, Meng Chen, Ce Yang, Shang Lu, Xie Zhang, Xinbiao Du. High-efficiency 50 W burst-mode hundred picosecond green laser[J]. High Power Laser Science and Engineering, 2020, 8(1): 010000e1 Copy Citation Text show less
    Schematic diagram of the seed laser. $\text{PBS}_{1}$, $\text{PBS}_{2}$: polarization beam splitters; FR: Faraday rotator isolator; HWP: half-wave plate; VBG: volume Bragg grating; $\text{BS}_{1}{-}\text{BS}_{3}$: beam splitters; $\text{M}_{1}{-}\text{M}_{5}$: high-reflectivity mirrors.
    Fig. 1. Schematic diagram of the seed laser. $\text{PBS}_{1}$, $\text{PBS}_{2}$: polarization beam splitters; FR: Faraday rotator isolator; HWP: half-wave plate; VBG: volume Bragg grating; $\text{BS}_{1}{-}\text{BS}_{3}$: beam splitters; $\text{M}_{1}{-}\text{M}_{5}$: high-reflectivity mirrors.
    Schematic diagram of the amplifier and SHG construction. $\text{P}_{1}{-}\text{P}_{3}$: polarizers; FR: Faraday rotator isolator; $\text{HWP}_{1}{-}\text{HWP}_{5}$: half-wave plates; $\text{TFP}_{1}$, $\text{TFP}_{2}$: thin-film polarizers; QWP: quarter-wave plate; PC: Pockels cell; $\text{R}_{1}$, $\text{R}_{2}$: convex mirrors; $\text{M}_{1}{-}\text{M}_{7}$: high-reflectivity mirrors; $\text{MD}_{1}{-}\text{MD}_{5}$: Nd:YAG modules; $\text{AL}_{1}$, $\text{AL}_{2}$: aspheric lenses; $\text{L}_{1}{-}\text{L}_{7}$: lenses; $\text{V}_{1}{-}\text{V}_{3}$: vacuum tubes; $\text{QR}_{1}$, $\text{QR}_{2}$: $90^{\circ }$ quartz rotators; $\text{A}_{1}$, $\text{A}_{2}$: aluminum blocks; $\text{M}_{8}$, $\text{M}_{9}$: dichroic mirrors.
    Fig. 2. Schematic diagram of the amplifier and SHG construction. $\text{P}_{1}{-}\text{P}_{3}$: polarizers; FR: Faraday rotator isolator; $\text{HWP}_{1}{-}\text{HWP}_{5}$: half-wave plates; $\text{TFP}_{1}$, $\text{TFP}_{2}$: thin-film polarizers; QWP: quarter-wave plate; PC: Pockels cell; $\text{R}_{1}$, $\text{R}_{2}$: convex mirrors; $\text{M}_{1}{-}\text{M}_{7}$: high-reflectivity mirrors; $\text{MD}_{1}{-}\text{MD}_{5}$: Nd:YAG modules; $\text{AL}_{1}$, $\text{AL}_{2}$: aspheric lenses; $\text{L}_{1}{-}\text{L}_{7}$: lenses; $\text{V}_{1}{-}\text{V}_{3}$: vacuum tubes; $\text{QR}_{1}$, $\text{QR}_{2}$: $90^{\circ }$ quartz rotators; $\text{A}_{1}$, $\text{A}_{2}$: aluminum blocks; $\text{M}_{8}$, $\text{M}_{9}$: dichroic mirrors.
    Waveform of RA.
    Fig. 3. Waveform of RA.
    Beam direction fluctuation.
    Fig. 4. Beam direction fluctuation.
    Intensity distributions of (a) input Gaussian beam ($\text{TEM}_{00}$ laser) and (b) laser after the shaping lens.
    Fig. 5. Intensity distributions of (a) input Gaussian beam ($\text{TEM}_{00}$ laser) and (b) laser after the shaping lens.
    Power fluctuation at 1064 and 532 nm.
    Fig. 6. Power fluctuation at 1064 and 532 nm.
    Spectral evolution of the system. The spectral widths of the seed, RA and oscillator power amplifier are 0.187, 0.112 and 0.142 nm, respectively.
    Fig. 7. Spectral evolution of the system. The spectral widths of the seed, RA and oscillator power amplifier are 0.187, 0.112 and 0.142 nm, respectively.
    Dependence of the green power and second harmonic conversion efficiency on the incident fundamental power.
    Fig. 8. Dependence of the green power and second harmonic conversion efficiency on the incident fundamental power.
    Spectrum of the SHG.
    Fig. 9. Spectrum of the SHG.
    Beam quality of SHG.
    Fig. 10. Beam quality of SHG.
    Ning Ma, Meng Chen, Ce Yang, Shang Lu, Xie Zhang, Xinbiao Du. High-efficiency 50 W burst-mode hundred picosecond green laser[J]. High Power Laser Science and Engineering, 2020, 8(1): 010000e1
    Download Citation