• Nano-Micro Letters
  • Vol. 16, Issue 1, 265 (2024)
Zhongping Li1,2, Kyeong-Seok Oh1, Jeong-Min Seo2, Wenliang Qin3..., Soohyoung Lee4, Lipeng Zhai3,*, Changqing Li2, Jong-Beom Baek2,** and Sang-Young Lee1,5,***|Show fewer author(s)
Author Affiliations
  • 1Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
  • 2School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan 44919, Republic of Korea
  • 3Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, People’s Republic of China
  • 4Department of Battery Conflation Engineering, Yonsei University, 50, Yonsei-Ro, Seodaemun-Gu, Seoul 03772, Republic of Korea
  • 5Department of Battery Engineering, Yonsei University, 50, Yonsei-Ro, Seodaemun-Gu, Seoul 03772, Republic of Korea
  • show less
    DOI: 10.1007/s40820-024-01485-3 Cite this Article
    Zhongping Li, Kyeong-Seok Oh, Jeong-Min Seo, Wenliang Qin, Soohyoung Lee, Lipeng Zhai, Changqing Li, Jong-Beom Baek, Sang-Young Lee. A Solvent-Free Covalent Organic Framework Single-Ion Conductor Based on Ion–Dipole Interaction for All-Solid-State Lithium Organic Batteries[J]. Nano-Micro Letters, 2024, 16(1): 265 Copy Citation Text show less
    References

    [1] C. Yang, Z. Suo, Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).

    [2] H.J. Kim, B. Chen, Z. Suo, R.C. Hayward, Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 367, 773–776 (2020).

    [3] W. Zhang, D.H. Seo, T. Chen, L. Wu, M. Topsakal et al., Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020).

    [4] C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, al4263 (2017).

    [5] Q. Zhao, S. Stalin, C.-Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    [6] C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang et al., Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    [7] J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019).

    [8] J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016).

    [9] M. Winter, B. Barnett, K. Xu, Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    [10] Y. An, X. Han, Y. Liu, A. Azhar, J. Na et al., Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 18, e2103617 (2022).

    [11] T. Zhou, X. Huang, N. Ding, Z. Lin, Y. Yao et al., Porous polyelectrolyte frameworks: synthesis, post-ionization and advanced applications. Chem. Soc. Rev. 51, 237–267 (2022).

    [12] D. Luo, M. Li, Q. Ma, G. Wen, H. Dou et al., Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chem. Soc. Rev. 51, 2917–2938 (2022).

    [13] P.J. Waller, F. Gándara, O.M. Yaghi, Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053–3063 (2015).

    [14] J. Li, X. Jing, Q. Li, S. Li, X. Gao et al., Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 49, 3565–3604 (2020).

    [15] S.-Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013).

    [16] D. Zhu, G. Xu, M. Barnes, Y. Li, C.-P. Tseng et al., Covalent organic frameworks for batteries. Adv. Funct. Mater. 31, 2100505 (2021).

    [17] H. Wang, Z. Zeng, P. Xu, L. Li, G. Zeng et al., Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev. 48, 488–516 (2019).

    [18] R.-R. Liang, S.-Y. Jiang, A. Ru-Han, X. Zhao, Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49, 3920–3951 (2020).

    [19] F. Meng, S. Bi, Z. Sun, B. Jiang, D. Wu et al., Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated Knoevenagel condensation. Angew. Chem. Int. Ed. Engl. 60, 13614–13620 (2021).

    [20] D.A. Vazquez-Molina, G.S. Mohammad-Pour, C. Lee, M.W. Logan, X. Duan et al., Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity. J. Am. Chem. Soc. 138, 9767–9770 (2016).

    [21] C. Li, D.-D. Wang, G.S.H. Poon Ho, Z. Zhang, J. Huang et al., Anthraquinone-based silicate covalent organic frameworks as solid electrolyte interphase for high-performance lithium–metal batteries. J. Am. Chem. Soc 145, 24603–24614 (2023).

    [22] Z. Meng, R.M. Stolz, K.A. Mirica, Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 141, 11929–11937 (2019).

    [23] Y. Hu, N. Dunlap, S. Wan, S. Lu, S. Huang et al., Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 141, 7518–7525 (2019).

    [24] G. Zhang, Y.-L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa et al., Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J. Am. Chem. Soc. 141, 1227–1234 (2019).

    [25] H. Xu, S. Tao, D. Jiang, Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 15, 722–726 (2016).

    [26] L. Yao, C. Ma, L. Sun, D. Zhang, Y. Chen et al., Highly crystalline polyimide covalent organic framework as dual-active-center cathode for high-performance lithium-ion batteries. J. Am. Chem. Soc. 144, 23534–23542 (2022).

    [27] S. Xu, M. Richter, X. Feng, Vinylene-linked two-dimensional covalent organic frameworks: synthesis and functions. Acc. Mater. Res. 2, 252–265 (2021).

    [28] W. Gong, Y. Ouyang, S. Guo, Y. Xiao, Q. Zeng et al., Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew. Chem. Int. Ed. 62, e202302505 (2023).

    [29] D. Guo, D.B. Shinde, W. Shin, E. Abou-Hamad, A.-H. Emwas et al., Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater. 34, e2201410 (2022).

    [30] K. Jeong, S. Park, G.Y. Jung, S.H. Kim, Y.-H. Lee et al., Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 141, 5880–5885 (2019).

    [31] X. Li, Q. Hou, W. Huang, H.-S. Xu, X. Wang et al., Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett. 5, 3498–3506 (2020).

    [32] G. Zhao, Z. Mei, L. Duan, Q. An, Y. Yang et al., COF-based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Carbon Energy 5, e248 (2023).

    [33] X. Li, K.P. Loh, Recent progress in covalent organic frameworks as solid-state ion conductors. ACS Mater. Lett. 1, 327–335 (2019).

    [34] S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde et al., Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665–2681 (2019).

    [35] H.S. Sasmal, H.B. Aiyappa, S.N. Bhange, S. Karak, A. Halder et al., Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. Int. Ed. 57, 10894–10898 (2018).

    [36] M.C. Senarathna, H. Li, S.D. Perera, J. Torres-Correas, S.D. Diwakara et al., Highly flexible dielectric films from solution processable covalent organic frameworks. Angew. Chem. Int. Ed. 62, e202312617 (2023).

    [37] F. Biedermann, H.-J. Schneider, Experimental binding energies in supramolecular complexes. Chem. Rev. 116, 5216–5300 (2016).

    [38] S. Bai, B. Kim, C. Kim, O. Tamwattana, H. Park et al., Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021).

    [39] R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa et al., Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    [40] K. Jeong, S. Park, S.-Y., Lee Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. J. Mater. Chem. A 7, 1917–1935 (2019).

    [41] K.-S. Oh, S. Park, J.-S. Kim, Y. Yao, J.-H. Kim et al., Electrostatic covalent organic frameworks as on-demand molecular traps for high-energy Li metal battery electrodes. ACS Energy Lett. 8, 2463–2474 (2023).

    [42] K.-S. Oh, J.-H. Kim, S.-H. Kim, D. Oh, S.-P. Han et al., Single-ion conducting soft electrolytes for semi-solid lithium metal batteries enabling cell fabrication and operation under ambient conditions. Adv. Energy Mater. 11, 2170151 (2021).

    [43] D.H. Kim, Y.-H. Lee, Y.B. Song, H. Kwak, S.-Y. Lee et al., Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 718–727 (2020).

    [44] H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140, 896–899 (2018).

    [45] Y. Cao, M. Wang, H. Wang, C. Han, F. Pan et al., Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy Mater. 12, 2200057 (2022).

    [46] Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao et al., All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014).

    [47] H. Fei, Y. Liu, Y. An, X. Xu, G. Zeng et al., Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode. J. Power. Sources 399, 294–298 (2018).

    [48] B. Kim, H. Kang, K. Kim, R.Y. Wang, M.J. Park, All-solid-state lithium-organic batteries comprising single-ion polymer nanoparticle electrolytes. ChemSusChem 13, 2271–2279 (2020).

    [49] W. Li, L. Chen, Y. Sun, C. Wang, Y. Wang et al., All-solid-state secondary lithium battery using solid polymer electrolyte and anthraquinone cathode. Solid State Ion. 300, 114–119 (2017).

    [50] Y. Shi, Y. Chen, Y. Liang, J. Andrews, H. Dong et al., Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries. J. Mater. Chem. A 7, 19691–19695 (2019).

    [51] M. Lécuyer, J. Gaubicher, A.-L. Barrès, F. Dolhem, M. Deschamps et al., A rechargeable lithium/quinone battery using a commercial polymer electrolyte. Electrochem. Commun. 55, 22–25 (2015).

    [52] M. Lécuyer, M. Deschamps, D. Guyomard, J. Gaubicher, P. Poizot, Electrochemical assessment of indigo carmine dye in lithium metal polymer technology. Molecules 26, 3079 (2021).

    [53] W. Wei, L. Li, L. Zhang, J. Hong, G. He, An all-solid-state Li-organic battery with quinone-based polymer cathode and composite polymer electrolyte. Electrochem. Commun. 90, 21–25 (2018).

    [54] S. Muench, R. Burges, A. Lex-Balducci, J.C. Brendel, M. Jäger et al., Printable ionic liquid-based gel polymer electrolytes for solid state all-organic batteries. Energy Storage Mater. 25, 750–755 (2020).

    [55] J. Zhang, Z. Chen, Q. Ai, T. Terlier, F. Hao et al., Microstructure engineering of solid-state composite cathode via solvent-assisted processing. Joule 5, 1845–1859 (2021).

    [56] F. Hao, X. Chi, Y. Liang, Y. Zhang, R. Xu et al., Taming active material-solid electrolyte interfaces with organic cathode for all-solid-state batteries. Joule 3, 1349–1359 (2019).

    [57] X. Zhou, Y. Zhang, M. Shen, Z. Fang, T. Kong et al., A highly stable Li-organic all-solid-state battery based on sulfide electrolytes. Adv. Energy Mater. 12, 2103932 (2022).

    [58] Z. Yang, F. Wang, Z. Hu, J. Chu, H. Zhan et al., Room-temperature all-solid-state lithium–organic batteries based on sulfide electrolytes and organodisulfide cathodes. Adv. Energy Mater. 11, 2102962 (2021).

    Zhongping Li, Kyeong-Seok Oh, Jeong-Min Seo, Wenliang Qin, Soohyoung Lee, Lipeng Zhai, Changqing Li, Jong-Beom Baek, Sang-Young Lee. A Solvent-Free Covalent Organic Framework Single-Ion Conductor Based on Ion–Dipole Interaction for All-Solid-State Lithium Organic Batteries[J]. Nano-Micro Letters, 2024, 16(1): 265
    Download Citation