[1] WU X S, HUANG Q, ZHU Y Z, et al. Joining of SiC ceramic by Si-C reaction bonding using organic resin as carbon precursor[J]. Materials, 2022, 15(12): 4242.
[2] LI H W, ZHAO Y P, CHEN G Q, et al. SiC-based ceramics with remarkable electrical conductivity prepared by ultrafast high-temperature sintering[J]. Journal of the European Ceramic Society, 2023, 43(5): 2269-2274.
[5] ZHOU Y B, SHA W H, LIU Y Y, et al. Influence of carbon source on microstructural and mechanical properties of high-performance reaction-bonded silicon carbide[J]. Materials, 2022, 15(15): 5250.
[6] CIFTJA A, ENGH T A, TANGSTAD M. Wetting properties of molten silicon with graphite materials[J]. Metallurgical and Materials Transactions A, 2010, 41(12): 3183-3195.
[9] LOUIS E, MIRALLES J A, MOLINA J M. Reactive infiltration: identifying the role of chemical reactions, capillarity, viscosity and gravity[J]. Journal of Materials Science, 2017, 52(12): 7530-7538.
[10] EUSTATHOPOULOS N, ISRAEL R, DREVET B, et al. Reactive infiltration by Si: Infiltration versus wetting[J]. Scripta Materialia, 2010, 62(12): 966-971.
[11] ROGER J, CHOLLON G. Mechanisms and kinetics during reactive infiltration of molten silicon in porous graphite[J]. Ceramics International, 2019, 45(7): 8690-8699.
[12] YUSHANNOV S P, SERGEI D, KOPPENHOEFER K C. Simulation of manufacturing process of ceramic matrix composites[M]. New York, USA: John Wiley & Sons, 2008.
[13] DUTKA V A. Numerical modeling of liquid-phase infiltration in the process of sintering ceramic composites[J]. Journal of Superhard Materials, 2014, 36(2): 105-116.
[14] SIENA M, ILIEV O, PRILL T, et al. Identification of channeling in pore-scale flows[J]. Geophysical Research Letters, 2019, 46(6): 3270-3278.
[15] VODK R, FRST T,R M, et al. The difference between semi-continuum model and Richards’ equation for unsaturated porous media flow[J]. Scientific Reports, 2022, 12: 7650.
[16] ALI Q, MARTIN J, BRANKO B. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces[J]. Advances in Water Resources, 2014, 74: 116-126.
[17] DONG C C. Numerical simulation of metal melt flows in mold cavity with ceramic porous media[J]. Ceramics-Silikaty, 2016: 129-135.
[18] SERGI D, GROSSI L, LEIDI T, et al. Lattice Boltzmann simulations on the role of channel structure for reactive capillary infiltration[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 9(1): 301-323.
[19] SERGI D, GROSSI L, LEIDI T, et al. Simulation of capillary infiltration into packing structures for the optimization of ceramic materials using the lattice Boltzmann method[J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 485-499.
[21] JETTESTUEN E, HELLAND J O, PRODANOVIAC'G1 M. A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles[J]. Water Resources Research, 2013, 49(8): 4645-4661.
[22] SINGH D, FRIIS H A, JETTESTUEN E, et al. Adaptive mesh refinement in locally conservative level set methods for multiphase fluid displacements in porous media[J]. Computational Geosciences, 2023, 27(5): 707-736.
[23] HELLAND J O, PEDERSEN J, FRIIS H A, et al. A multiphase level set approach to motion of disconnected fluid Ganglia during capillary-dominated three-phase flow in porous media: numerical validation and applications[J]. Chemical Engineering Science, 2019, 203: 138-162.
[24] TERSOFF J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems[J]. Physical Review B, 1989, 39(8): 5566-5568.
[26] CASSIE A B D. Contact angles[J]. Discussions of the Faraday Society, 1948, 3: 11.
[27] HOSSEINZADEGAN A, RAOOF A, MAHDIYAR H, et al. Review on pore-network modeling studies of gas-condensate flow: pore structure, mechanisms, and implementations[J]. Geoenergy Science and Engineering, 2023, 226: 211693.
[28] CAI J C, JIN T X, KOU J S, et al. Lucas-washburn equation-based modeling of capillary-driven flow in porous systems[J]. Langmuir, 2021, 37(5): 1623-1636.
[29] ZHANG K Y, ZHAO R D, YANG Y Q, et al. Capillary infiltration of liquid silicon in carbon nanotubes: a molecular dynamics simulation[J]. Journal of Materials Science & Technology, 2023, 144: 219-223.
[34] EINSET E O. Analysis of reactive melt infiltration in the processing of ceramics and ceramic composites[J]. Chemical Engineering Science, 1998, 53(5): 1027-1039.