[1] LI L, SHAN Y, WANG F, et al. Improving fast and safe transfer of lithium ions in solid-state lithium batteries by porosity and channel structure of polymer electrolyte[J]. ACS Appl Mater Inter, 2021, 13(41): 48525-48535.
[2] SHEN Z, ZHONG J, XIE W, et al. Effect of LiTFSI and LiFSI on cycling performance of lithium metal batteries using thermoplastic polyurethane/halloysite nanotubes solid electrolyte[J]. Acta Metall Sin-Engl, 2021, 34(3): 359-372.
[3] SHEN Z, CHENG Y, SUN S, et al. The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation[J]. Carbon Energy, 2021, 3: 482-508.
[4] LI Y, LI Q, TAN Z. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries[J]. J Power Sources, 2019, 443(15): 227262.
[5] MAI L, TIAN X, XU X, et al. Nanowire electrodes for electrochemical energy storage devices[J]. Chem Rev, 2014, 114(23): 11828-11862.
[6] ZHENG Z, CHENG Y, YAN X, et al. Enhanced electrochemical properties of graphene-wrapped ZnMn2O4 nanorods for lithium-ion batteries[J]. J Mater Chem A, 2014, 2(1): 149-154.
[7] ARAVINDAN V, SUNDARAMURTHY J, SURESHK K P, et al. Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries[J]. Chem Commun, 2015, 51(12): 2225-2234.
[8] XIA Y, YANG P, SUN Y, et al. One-dimensional nanostructures: Synthesis, characterization, and applications[J]. Adv Mater, 2003, 15(5): 353-389.
[9] WU C, BEIN T. Conducting polyaniline filaments in a mesoporous channel host[J]. Science, 1994, 264(5166): 1757-1759.
[10] FAN Z, YAN J, WEI T, et al. Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: High-performance anode materials for lithium ion batteries[J]. ACS Nano, 2011, 5(4): 2787-2794.
[11] HARTGERINK J D, BENIASH E, STUPP S I. Self-assembly and mineralization of peptide-amphiphile nanofibers[J]. Science, 2001, 294(5547): 1684-1688.
[12] MEIER C, WELLAND M E. Wet-spinning of amyloid protein nanofibers into multifunctional high-performance biofibers[J]. Biomacromolecules, 2011, 12(10): 3453-3459.
[13] SUPOTHINA S, RATTANAKAM R, TAWKAEW S. Hydrothermal synthesis and photocatalytic activity of anatase TiO2 nanofiber[J]. J Nanosci Nanotechno, 2012, 12(6): 4998-5003.
[14] WANG X, DING B, SUN G, et al. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets[J]. Prog Mater Sci, 2013, 58(8): 1173-1243.
[15] JUNG H, JU D, LEE W, et al. Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes[J]. Electrochim Acta, 2009, 54(13): 3630-3637.
[16] CHU P P, REDDY M J, KAO H M. Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li[J]. Solid State Ionics, 2003, 156(1): 141-153.
[17] WALLS H J, ZHOU J, YERIAN J A, et al. Fumed silica-based composite polymer electrolytes: Synthesis, rheology, and electrochemistry[J]. J Power Sources, 2000, 89(2): 156-162.
[18] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Lett, 2016, 16(1): 459-465.
[19] LI Y, ZHANG W, DOU Q, et al. Li7La3Zr2O12 ceramic nanofiber- incorporated composite polymer electrolytes for lithium metal batteries[J]. J Mater Chem A, 2019, 7(7): 3391-3398.
[20] XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chem Rev, 2019, 119(8): 5298-5415.
[21] IKEDA H, FUJINO S, KAJIWARA T. Preparation of SiO2-PVA nanocomposite and monolithic transparent silica glass by sintering[J]. J Ceram Soc Jpn, 2011, 119(1385): 65-69.
[22] LI J, SUO J, JIA L. Morphologies and mechanical properties of organic-inorganic multilayered composites[J]. Polym Eng Sci, 2010, 50(4): 689-696.
[23] CHANG M, CUI W, LIU J, et al. Facile preparation of porous inorganic SiO2 nanofibrous membrane by electrospinning method[J]. J Nanomater, 2017, 2017: 9621515.
[24] MAO X, SI Y, CHEN Y, et al. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration[J]. RCS Adv, 2012, 2(32): 12216-12223.
[26] GUO M, DING B, LI X, et al. Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties[J]. J Phys Chem C, 2010, 114(2): 916-921.
[27] DAI Z, YAN F, QIN M, et al. Fabrication of flexible SiO2 nanofibrous yarn via a conjugate electrospinning process[J]. E-Polymers, 2020, 20(1): 600-605.
[28] GUO M, DING B, LI X, et al. Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties[J]. J Phys Chem C, 2010, 114(2): 916-921.
[30] WANG M, WU Y, QIU M, et al. Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries[J]. J Energy Chem, 2021, 61: 253-268.
[31] JAYAWARDENA K D G I, BANDARA R M I, MONTI M, et al. Approaching the shockley-queisser limit for fill factors in lead-tin mixed perovskite photovoltaics[J]. J Mater Chem A, 2020, 8(2): 693-705.