• PhotoniX
  • Vol. 5, Issue 1, 15 (2024)
Junyong Zhang1,†,*, Huaiyu Cui2,†, Yuanyuan Liu3,4,†..., Xiuping Zhang1, You Li1, Dongdi Zhao2, Yongpeng Zhao2,** and Qiwen Zhan3,4,5,***|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Qinghe Road, 201800 Shanghai, China
  • 2National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Xidazhi Road, 150001 Harbin, China
  • 3School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Jungong Road, 200093 Shanghai, China
  • 4Zhangjiang Laboratory, 100, Haike Road, 201204 Shanghai, China
  • 5Westlake Institute for Optoelectronics, 311421, Fuyang Hangzhou, China
  • show less
    DOI: 10.1186/s43074-024-00130-x Cite this Article
    Junyong Zhang, Huaiyu Cui, Yuanyuan Liu, Xiuping Zhang, You Li, Dongdi Zhao, Yongpeng Zhao, Qiwen Zhan. Producing focused extreme ultraviolet vortex with Fermat-spiral photon sieves[J]. PhotoniX, 2024, 5(1): 15 Copy Citation Text show less
    References

    [1] Gardner DF, Tanksalvala M, Shanblatt ER, Zhang X, Galloway BR, Porter CL, Karl R Jr, Bevis C, Adams DE, Kapteyn HC, Murnane MM, Mancini GF. Subwavelength coherent imaging of periodic samples using a 13.5nm tabletop high-harmonic light source. Nat Photon. 2017;11(4):259–63.

    [2] Sivis M, Duwe M, Abel B, Ropers C. Extreme-ultraviolet-light generation in plasmonic nanostructures. Nat Phys. 2013;9(5):304–9.

    [3] Eschen W, Loetgering L, Schuster V, Klas R, Kirsche A, Berthold L, Steinert M, Pertsch T, Gross H, Krause M, Limpert J, Rothhardt J. Material-specific high-resolution table-top extreme ultraviolet microscopy. Light Sci Appl. 2022;11(1):1–10.

    [4] Benko C, Allison TK, Cingoz A, Hua L, Labaye F, Yost DC, Ye J. Extreme ultraviolet radiation with coherence time greater than 1s. Nat Photon. 2014;8(7):530–6.

    [5] Klas R, Demmler S, Tschernajew M, Hadrich S, Shamir Y, Tunnermann A, Rothhardt J, Limpert J. Table-Top Milliwatt-Class Extreme Ultraviolet High Harmonic Light Source. Optica. 2016;3(11):1167–70.

    [6] Allaria E, Appio R, Badano L, Barletta WA, Bassanese S, Biedron SG, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat Photon. 2012;6(10):699–704.

    [7] Rocca JJ, Shlyaptsev V, Tomasel FG, Cortazar OD, Hartshorn D, Chilla JLA. Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser. Phys Rev Lett. 1994;73(16):2192–5.

    [8] Zhao Y, Jiang S, Xie Y, Yang D, Teng S, Chen D, Wang Q. Demonstration of soft x-ray laser of Ne-like Ar at 69.8nm pumped by capillary discharge. Opt Lett. 2011;36(17):3458–60.

    [9] Géneaux R, Camper A, Auguste T, Gobert O, Caillat J, Taieb R, Ruchon T. Synthesis characterization of attosecond light vortices in the extreme ultraviolet. Nat Commun. 2016;7:12583–1–6.

    [10] Rego L, San Román J, Picón A, Plaja L, Hernández-García C. Nonperturbative Twist in the Generation of Extreme-Ultraviolet Vortex Beams. Phys Rev Lett. 2016;117(16):163202–1–6.

    [11] Dorney KM, Rego L, Brooks NJ, San Román J, Liao C-T, Ellis JL, Zusin D, Gentry C, Nguyen QL, Shaw JM, Picón A, Plaja L, Kapteyn HC, Murnane MM, Hernández-García C. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation. Nat Photon. 2019;13(2):123–30.

    [12] Ossiander M, Meretska ML, Hampel HK, Lim SWD, Knefz N, Jauk T, Capasso F, Schultze M. Extreme ultraviolet metalens by vacuum guiding. Science. 2023;380(6640):59–63.

    [13] Kipp L, Skibowski M, Johnson RLM, Berndt R, Adelung R, Harm S, Seemann R. Sharper images by focusing soft Xrays with photon sieves. Nature. 2001;414(6860):184–8.

    [14] Padgett M, Bowman R. Tweezers with a twist. Nat Photon. 2011;5(6):343–8.

    [15] Wagner C, Harned N. EUV lithography: Lithography gets extreme. Nat Photon. 2010;4(1):24–6.

    [16] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl. 2019;8:90–1–29.

    [17] Hernandez-Garcıa C, Picon A, San Roman J, Plaja L. Attosecond Extreme Ultraviolet Vortices from High-Order Harmonic Generation. Light Sci Appl. 2013;111(8):083602–1–5.

    [18] Pandey AK, de las Heras A, Larrieu T, San Román J, Serrano J, Plaja L, Baynard E, Pittman M, Dovillaire G, Kazamias S, Hernández-García C, Guilbaud O. Characterization of Extreme-Ultraviolet Vortex Beams with very high topological charge. ACS Photon. 2022;9(3):944–51.

    [19] Kong F, Zhang C, Bouchard F, Li Z, Brown GG, Ko DH, Hammond TJ, Arissian L, Boyd RW, Karimi E, Corkum PB. Controlling the orbital angular momentum of high harmonic vortices. Nat Commun. 2017;8:14970–1–6.

    [20] Rego L, Dorney KM, Brooks NJ, Nguyen QL, Liao C-T, San Román J, Couch DE, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn HC, Murnane MM, Hernández-García C. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science. 2019;364(6447):1253–7.

    [21] Xu S, Ma Y, Zhang J, Zhou S, Zhu J. Multiplanar imaging properties of Fermat-spiral Greek-ladder sieves with different point spread functions. Opt Commun. 2019;434:191–5.

    [22] Huang Q, Lu X, Zhang H, Wang Z, Yang Y, Zhan Q, Cai Y, Zhao C. Economical generation of high-quality optical vortices with gradual-width Fermat spiral slit mask. Sci China Phys Mech Astron. 2023;66(4):244211–1–9.

    [23] Ebrahimi H, Sabatyan A. Multi-region spiral photon sieve to produce tailorable multiple vortex. Opt Laser Technol. 2020;126:106137–1–6.

    [24] Fraczek E, Popiołek-Masajada A, Szczepaniak S. Characterization of the Vortex Beam by Fermat’s Spiral. Photonics. 2020;7(4):102–6.

    [25] Bai Y, Lv H, Fu X, Yang Y. Vortex beam: generation and detection of orbital angular momentum [Invited]. Chin Opt Lett. 2022;20(1):012601–1–15.

    [26] Yang Y, Thirunavukkarasu G, Babiker M, Yuan J. Orbital-Angular-Momentum Mode Selection by Rotationally Symmetric Superposition of Chiral States with Application to Electron Vortex Beams. Phys Rev Lett. 2017;119(9):094802–1–5.

    [27] Liu R, Li F, Padgett MJ, Phillips DB. Generalized photon sieves: fine control of complex fields with simple pinhole arrays. Optica. 2015;2(12):1028–36.

    [28] Huang K, Liu H, Garcia-Vidal FJ, Hong M, Lukyanchuk B, Teng J, Qiu C-W. Ultrahigh-capacity photonic nanosieves operating in visible light. Nat Commun. 2015;6:7059.

    [29] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes. Opt Lett. 2005;30(8):833–5.

    [30] Zhao Y, Liu T, Zhang W, Li W, Cui H. Demonstration of gain saturation and double-pass amplification of a 69.8nm laser pumped by capillary discharge. Opt Lett. 2016;41(16):3779–82.

    [31] Zhao Y, Zhao D, An B, Li L, Bai Y, Cui H. Demonstration of double-pass amplification of gain saturated 46.9 nm laser. Opt Commun. 2022;506:127571.

    Junyong Zhang, Huaiyu Cui, Yuanyuan Liu, Xiuping Zhang, You Li, Dongdi Zhao, Yongpeng Zhao, Qiwen Zhan. Producing focused extreme ultraviolet vortex with Fermat-spiral photon sieves[J]. PhotoniX, 2024, 5(1): 15
    Download Citation