• Photonics Research
  • Vol. 3, Issue 5, 275 (2015)
Xiaobo Xue1, Duo Pan1, Xiaogang Zhang1, Bin Luo2, Jingbiao Chen1、*, and Hong Guo1
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
  • 2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.1364/prj.3.000275 Cite this Article Set citation alerts
    Xiaobo Xue, Duo Pan, Xiaogang Zhang, Bin Luo, Jingbiao Chen, Hong Guo. Faraday anomalous dispersion optical filter at 133Cs weak 459 nm transition[J]. Photonics Research, 2015, 3(5): 275 Copy Citation Text show less
    References

    [1] Y. Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19, 9–11 (1956).

    [2] P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and A. Lurio, “Frequency-locking of organic dye lasers to atomic resonance lines,” Appl. Phys. Lett. 15, 179–181 (1969).

    [3] T. Endo, T. Yabuzaki, M. Kitano, T. Sato, and T. Ogawa, “Frequency-locking of a CW dye laser to the center of the sodium D lines by a Faraday filter,” IEEE J. Quantum Electron. 13, 866–871 (1977).

    [4] P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069–2075 (1982).

    [5] S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters revisited: theory and applications,” J. Opt. Soc. Am. B 26, 659–670 (2009).

    [6] A. Popescu and T. Walther, “On the potential of Faraday anomalous dispersion optical filters as high-resolution edge filters,” Laser Phys. 15, 55–60 (2005).

    [7] J. A. Zielin′ ska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett. 37, 524–526 (2012).

    [8] B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett. 16, 1617–1619 (1991).

    [9] B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455 nm transition,” IEEE Photon. Technol. Lett. 4, 488–490 (1992).

    [10] J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846–848 (1991).

    [11] M. A. Zentile, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Atomic Faraday filter with equivalent noise bandwidth less than 1 GHz,” Opt. Lett. 40, 2000–2003 (2015).

    [12] D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16, 867–869 (1991).

    [13] L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, “Optical isolator using an atomic vapor in the hyperfine Paschen–Back regime,” Opt. Lett. 37, 3405–3407 (2012).

    [14] J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).

    [15] A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98, 667–675 (2010).

    [16] A. Rudolf and T. Walther, “High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration,” Opt. Lett. 37, 4477–4479 (2012).

    [17] A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53, 051407 (2014).

    [18] R. C. Smith and J. E. Tyler, “Optical properties of clear natural water,” J. Opt. Soc. Am. 57, 589–594 (1967).

    [19] X. Zhang, Z. Tao, C. Zhu, Y. Hong,W. Zhuang, and J. Chen, “An alloptical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21, 28010–28018 (2013).

    [20] X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

    [21] J. Chen, “Active optical clock,”Chin. Sci. Bull. 54, 348–352 (2009).

    [22] W. Zhuang and J. Chen, “An active Faraday optical frequency standard,” Opt. Lett. 39, 6339–6342 (2014).

    [23] J. Menders, P. Searcy, K. Roff, S. H. Bloom, and E. Korevaar, “Ultra-narrow linefiltering using a Cs Faraday filter at 455 nm,” in Proceedings of the International Conference on Lasers (1991).

    [24] Y. Zhang, Y. Bi, X. Jiang, J. Yu, and Z. Ma, “Magneto-optical dispersion filter at the Cs 455, 459 nm transition,” Proc. SPIE 2893, 120–123 (1996).

    [25] P. M. Stone, “Cesium oscillator strengths,” Phy. Rev. 127, 1151–1156 (1962). 26. L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole-dipole interactions,” J. Phys. B 44, 195006 (2011).

    [26] M. A. Zentile, R. S. Mathew, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Effect of line broadening on the performance of Faraday filters,” arXiv:1504.03651 (2015).

    [27] D. Pan, Z. Xu, X. Xue, W. Zhuang, and J. Chen, “Lasing of cesium active optical clock with 459 nm laser pumping,” in Proceedings of 2014 IEEE International Frequency Control Symposium (FCS) (2014), pp. 242–245.

    CLP Journals

    [1] Pengyuan Chang, Tiantian Shi, Shengnan Zhang, Haosen Shang, Duo Pan, Jingbiao Chen. Faraday laser at Rb 1529 nm transition for optical communication systems[J]. Chinese Optics Letters, 2017, 15(12): 121401

    Xiaobo Xue, Duo Pan, Xiaogang Zhang, Bin Luo, Jingbiao Chen, Hong Guo. Faraday anomalous dispersion optical filter at 133Cs weak 459 nm transition[J]. Photonics Research, 2015, 3(5): 275
    Download Citation