• High Power Laser and Particle Beams
  • Vol. 31, Issue 6, 63203 (2019)
Xu Xiaoying1、*, Shu Xiaorong1, Liu Pengyu1, Gan Yingjie2, and Zhang Chengming1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11884/hplpb201931.190035 Cite this Article
    Xu Xiaoying, Shu Xiaorong, Liu Pengyu, Gan Yingjie, Zhang Chengming. Experimental characteristics of surface discharging for air electrostatic discharge on display[J]. High Power Laser and Particle Beams, 2019, 31(6): 63203 Copy Citation Text show less

    Abstract

    The display is an important part of human-computer interaction. When the human body electrostatic discharge occurs on the surface of the display, it may lead to hardware and software faults. In order to study the experimental characteristics of air electrostatic discharge on display, the air electrostatic discharge current and the displacement current through the display screen were measured by a self-made device. It is found that the peak value of discharge current increases with the increase of approaching velocity, and the rising time decreases with the increase of approaching velocity. In the voltage range of ±10-±12 kV, the rise time increases and the peak current decreases under the influence of arc length. With the increase of the distance between the measurement point and the discharge point, the peak value of the displacement current waveform decreases and the rising time increases. The peak value of the positive polarity discharge is larger and the diffusion range is wider, while the rising time of the negative polarity discharge is more obvious. The charge density can be calculated from the displacement current waveform and its distribution. The charge density decreases with the distance of discharge position increasing. Although the peak value of negative polarity discharge current is lower than that of positive polarity, the charge density is higher.This indicates that the negative polarity discharge has a higher damage risk.
    Xu Xiaoying, Shu Xiaorong, Liu Pengyu, Gan Yingjie, Zhang Chengming. Experimental characteristics of surface discharging for air electrostatic discharge on display[J]. High Power Laser and Particle Beams, 2019, 31(6): 63203
    Download Citation