• Photonics Research
  • Vol. 7, Issue 8, 905 (2019)
Lu Wang, Xuefei Zhou, Shuo Yang, Gaoshan Huang, and Yongfeng Mei*
Author Affiliations
  • Department of Materials Science and State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.1364/PRJ.7.000905 Cite this Article Set citation alerts
    Lu Wang, Xuefei Zhou, Shuo Yang, Gaoshan Huang, Yongfeng Mei. 2D-material-integrated whispering-gallery-mode microcavity[J]. Photonics Research, 2019, 7(8): 905 Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] T. J. Kippenberg, S. M. Spillane, D. K. Armani, K. J. Vahala. Fabrication and coupling to planar high-Q silica disk microcavities. Appl. Phys. Lett., 83, 797-799(2003).

    [3] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [4] L. Ge, L. Feng, H. G. L. Schwefel. Optical microcavities: new understandings and developments. Photon. Res., 5, M1-M3(2017).

    [5] Y. Zhi, X. Yu, Q. Gong, L. Yang, Y. Xiao. Single nanoparticle detection using optical microcavities. Adv. Mater., 29, 1604920(2017).

    [6] X. Jiang, Y. Xiao, C. Zou, L. He, C. Dong, B. Li, Y. Li, F. Sun, L. Yang, Q. Gong. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv. Mater., 24, P260-P264(2012).

    [7] W. Chen, J. Zhang, B. Peng, S. K. Özdemir, X. Fan, L. Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor [invited]. Photon. Res., 6, A23-A30(2018).

    [8] X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, Y. Xiao. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics, 13, 21-24(2019).

    [9] Q. Song. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci. China Phys. Mech. Astron., 62, 074231(2019).

    [10] J. R. Buck, H. J. Kimble. Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A, 67, 033806(2003).

    [11] V. Zamora, A. Diez, M. V. Andres, B. Gimeno. Refractometric sensor based on whispering-gallery modes of thin capillaries. Opt. Express, 15, 12011-12016(2007).

    [12] M. G. Senthil, M. N. Petrovich, Y. Jung, J. S. Wilkinson, M. N. Zervas. Hollow-bottle optical microresonators. Opt. Express, 19, 20773-20784(2011).

    [13] Y. Xiao, S. K. Ozdemir, V. Gaddam, C. Dong, N. Imoto, L. Yang. Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity. Opt. Express, 16, 21462-21475(2008).

    [14] Q. Song, W. Fang, B. Liu, S. Ho, G. S. Solomon, H. Cao. Chaotic microcavity laser with high quality factor and unidirectional output. Phys. Rev. A, 80, 041807(2009).

    [15] G. Huang, Y. Mei. Electromagnetic wave propagation in a rolled-up tubular microcavity. J. Mater. Chem. C, 5, 2758-2770(2017).

    [16] J. Wang, T. Zhan, G. Huang, P. K. Chu, Y. Mei. Optical microcavities with tubular geometry: properties and applications. Laser Photon. Rev., 8, 521-547(2014).

    [17] J. Wang, T. Zhan, G. Huang, X. Cui, X. Hu, Y. Mei. Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes. Opt. Express, 20, 18555-18567(2012).

    [18] C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, T. Kipp. Optical microcavities formed by semiconductor microtubes using a bottlelike geometry. Phys. Rev. Lett., 101, 127403(2008).

    [19] Z. Tian, S. Li, S. Kiravittaya, B. Xu, S. Tang, H. Zhen, W. Lu, Y. Mei. Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity. Nano Lett., 18, 8035-8040(2018).

    [20] X. Lin, Y. Fang, L. Zhu, J. Zhang, G. Huang, J. Wang, Y. Mei. Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity. Adv. Opt. Mater., 4, 936-942(2016).

    [21] Y. Li, Y. Fang, J. Wang, L. Wang, S. Tang, C. Jiang, L. Zheng, Y. Mei. Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization. Lab Chip, 16, 4406-4414(2016).

    [22] Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang, N. Hu, Z. An, Z. Chen, Y. Mei. Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv. Mater., 29, 1604572(2017).

    [23] J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, J. Xu. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072-23078(2015).

    [24] Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song, S. Xiao. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater., 4, 472-479(2016).

    [25] A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, Z. Sun. Nonlinear optics with 2D layered materials. Adv. Mater., 30, 1705963(2018).

    [26] M. Li, L. Zhang, L. Tong, D. Dai. Hybrid silicon nonlinear photonics [invited]. Photon. Res., 6, B13-B22(2018).

    [27] X. Liu, Q. Guo, J. Qiu. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater., 29, 1605886(2017).

    [28] D. Jariwala, T. J. Marks, M. C. Hersam. Mixed-dimensional van der Waals heterostructures. Nat. Mater., 16, 170-181(2017).

    [29] M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, T. Mueller. Microcavity-integrated graphene photodetector. Nano Lett., 12, 2773-2777(2012).

    [30] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [31] A. K. Geim. Graphene: status and prospects. Science, 324, 1530-1534(2009).

    [32] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed., 48, 7752-7777(2009).

    [33] M. J. Allen, V. C. Tung, R. B. Kaner. Honeycomb carbon: a review of graphene. Chem. Rev., 110, 132-145(2010).

    [34] J. Wang, S. Deng, Z. Liu, Z. Liu. The rare two-dimensional materials with Dirac cones. Natl. Sci. Rev., 2, 22-39(2015).

    [35] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett., 8, 902-907(2008).

    [36] K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim. A roadmap for graphene. Nature, 490, 192-200(2012).

    [37] Y. Zhang, Y. Tan, H. L. Stormer, P. Kim. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438, 201-204(2005).

    [38] Z. Sun, H. Chang. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano, 8, 4133-4156(2014).

    [39] C. Si, Z. Sun, F. Liu. Strain engineering of graphene: a review. Nanoscale, 8, 3207-3217(2016).

    [40] D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, Z. Shen. Engineering the electronic structure of graphene. Adv. Mater., 24, 4055-4069(2012).

    [41] C. Stampfer, J. Guettinger, F. Molitor, D. Graf, T. Ihn, K. Ensslin. Tunable Coulomb blockade in nanostructured graphene. Appl. Phys. Lett., 92, 012102(2008).

    [42] X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, D. Englund. Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett., 12, 5626-5631(2012).

    [43] P. Wang, O. Liang, W. Zhang, T. Schroeder, Y. Xie. Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection. Adv. Mater., 25, 4918-4924(2013).

    [44] Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, F. J. García De Abajo. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano, 7, 2388-2395(2013).

    [45] O. V. Kotov, Y. E. Lozovik. Cavity plasmon polaritons in monolayer graphene. Phys. Lett. A, 375, 2573-2576(2011).

    [46] L. Yu, J. Zheng, Y. Xu, D. Dai, S. He. Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits. ACS Nano, 8, 11386-11393(2014).

    [47] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh. Broadband graphene polarizer. Nat. Photonics, 5, 411-415(2011).

    [48] J. Zhao, W. Qiu, Y. Huang, J. Wang, Q. Kan, J. Pan. Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks. Opt. Lett., 39, 5527-5530(2014).

    [49] F. Zangeneh-Nejad, R. Safian. A graphene-based THz ring resonator for label-free sensing. IEEE Sens. J., 16, 4338-4344(2016).

    [50] H. Fan, C. Xia, L. Fan, L. Wang, M. Shen. Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity. Opt. Commun., 410, 668-673(2018).

    [51] X. Zhang, H. Fan, X. Jiang, M. Xiao. Controllable coupling of an ultra-high-Q microtoroid cavity with monolayer graphene. CLEO: Science and Innovations, JTu5A-79(2017).

    [52] Y. Wu, B. Yao, C. Yu, Y. Rao. Optical graphene gas sensors based on microfibers: a review. Sensors, 18, 941(2018).

    [53] B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, W. Duan. Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J. Phys. Chem. C, 112, 13442-13446(2008).

    [54] C. Melios, C. E. Giusca, V. Panchal, O. Kazakova. Water on graphene: review of recent progress. 2D Mater., 5, 22001(2018).

    [55] B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiane. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Opt. Express, 22, 28154-28162(2014).

    [56] B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, S. Li, Q. Bao. The roadmap of graphene-based optical biochemical sensors. Adv. Funct. Mater., 27, 1603918(2017).

    [57] Y. Wu, T. Zhang, Y. Rao, Y. Gong. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B, 155, 258-263(2011).

    [58] C. Yu, Y. Wu, X. Liu, B. Yao, F. Fu, Y. Gong, Y. Rao, Y. Chen. Graphene oxide deposited microfiber knot resonator for gas sensing. Opt. Mater. Express, 6, 727-733(2016).

    [59] B. Yao, C. Yu, Y. Wu, S. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, Y. Rao. Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Lett., 17, 4996-5002(2017).

    [60] A. Madani, S. M. Harazim, V. A. Bolanos Quinones, M. Kleinert, A. Finn, E. S. G. Naz, L. Ma, O. G. Schmidt. Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing. Opt. Lett., 42, 486-489(2017).

    [61] U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, S. K. Ber. Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications. Small, 10, 3863-3868(2014).

    [62] B. Yao, Y. Liu, S. Huang, C. Choi, Z. Xie, J. F. Flores, Y. Wu, M. Yu, D. Kwong, Y. Huang, Y. Rao, X. Duan, C. W. Wong. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nat. Photonics, 12, 22-28(2018).

    [63] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [64] M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. De Angelis, A. Locatelli, A. Capobianco. Graphene-assisted critically-coupled optical ring modulator. Opt. Express, 20, 23144-23155(2012).

    [65] C. T. Phare, Y. Daniel Lee, J. Cardenas, M. Lipson. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics, 9, 511-514(2015).

    [66] Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, S. Yu. Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators. J. Opt., 19, 045801(2017).

    [67] S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, Q. Bao. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 7, 2249-2255(2015).

    [68] S. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, Y. R. Shen. All-optical graphene modulator based on optical Kerr phase shift. Optica, 3, 541-544(2016).

    [69] K. Wu, Y. Wang, C. Qiu, J. Chen. Thermo-optic all-optical devices based on two-dimensional materials. Photon. Res., 6, C22(2018).

    [70] C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, J. Chen. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci. Rep., 7, 17046(2017).

    [71] M. Mohsin, D. Schall, M. Otto, B. Chmielak, S. Suckow, D. Neumaier. Towards the predicted high performance of waveguide integrated electro-refractive phase modulators based on graphene. IEEE Photon. J., 9, 7800507(2017).

    [72] C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett., 14, 6811-6815(2014).

    [73] Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, K. Yvind. Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator. Nano Lett., 15, 4393-4400(2015).

    [74] Y. Gao, W. Zhou, X. Sun, H. K. Tsang, C. Shu. Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si3N4 ring resonator. Opt. Lett., 42, 1950-1953(2017).

    [75] Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, S. Yan. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system. Sci. Rep., 6, 38891(2016).

    [76] B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, C. W. Wong. Gate-tunable frequency combs in graphene-nitride microresonators. Nature, 558, 410-414(2018).

    [77] A. Villois, D. V. Skryabin. Soliton and quasi-soliton frequency combs due to second harmonic generation in microresonators. Opt. Express, 27, 7098-7107(2019).

    [78] M. Jiang, J. Li, C. Xu, S. Wang, C. Shan, B. Xuan, Y. Ning, D. Shen. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Opt. Express, 22, 23836-23850(2014).

    [79] J. Li, M. Jiang, C. Xu, Y. Wang, Y. Lin, J. Lu, Z. Shi. Plasmon coupled Fabry–Perot lasing enhancement in graphene/ZnO hybrid microcavity. Sci. Rep., 5, 9263(2015).

    [80] J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, Y. Li. Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity. ACS Appl. Mater. Interfaces, 6, 10469-10475(2014).

    [81] J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, J. Dai. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance. ACS Nano, 9, 6794-6800(2015).

    [82] C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, A. G. Manohari. Plasmon-enhanced ZnO whispering-gallery mode lasing. Nano Res., 11, 3050-3064(2018).

    [83] H. Baek, C. Lee, K. Chung, G. Yi. Epitaxial GaN microdisk lasers grown on graphene microdots. Nano Lett., 13, 2782-2785(2013).

    [84] K. Chung, H. Yoo, J. K. Hyun, H. Oh, Y. Tchoe, K. Lee, H. Baek, M. Kim, G. Yi. Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots. Adv. Mater., 28, 7688-7694(2016).

    [85] J. Zheng, H. Xu, J. J. Wang, S. Winters, C. Motta, E. Karademir, W. Zhu, E. Varrla, G. S. Duesberg, S. Sanvito, W. Hu, J. F. Donegan. Vertical single-crystalline organic nanowires on graphene: solution-phase epitaxy and optical microcavities. Nano Lett., 16, 4754-4762(2016).

    [86] Y. Kim, S. Kwon, J. M. Lee, M. Hwang, J. Kang, W. I. Park, H. Park. Graphene-contact electrically driven microdisk lasers. Nat. Commun., 3, 1123(2012).

    [87] F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam. Two-dimensional material nanophotonics. Nat. Photonics, 8, 899-907(2014).

    [88] Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, O. G. Schmidt. Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10  nm gap. Adv. Opt. Mater., 6, 1700984(2018).

    [89] G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, B. Urbaszek. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett., 114, 097403(2015).

    [90] A. Ramasubramaniam. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B, 86, 115409(2012).

    [91] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, T. F. Heinz. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett., 113, 076802(2014).

    [92] C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, M. Terrones, Q. Gan, Z. Liu. MoS2 monolayers on nanocavities: enhancement in light–matter interaction. 2D Mater., 3, 025017(2016).

    [93] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [94] K. F. Mak, J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 10, 216-226(2016).

    [95] R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, E. J. R. Kelleher. Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives [invited]. Photon. Res., 3, A30-A42(2015).

    [96] J. Liu, T. Wang, X. Li, N. Liu. Enhanced absorption of monolayer MoS2 with resonant back reflector. J. Appl. Phys., 115, 193511(2014).

    [97] S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, A. I. Tartakovskii. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun., 6, 8579(2015).

    [98] L. Reeves, Y. Wang, T. F. Krauss. 2D material microcavity light emitters: to lase or not to lase?. Adv. Opt. Mater., 6, 1800272(2018).

    [99] T. Fryett, A. Zhan, A. Majumdar. Cavity nonlinear optics with layered materials. Nanophotonics, 7, 355-370(2017).

    [100] J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, E. Cubukcu. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett., 15, 1967-1971(2015).

    [101] S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, X. Xu. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 520, 69-72(2015).

    [102] Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, X. Zhang. Monolayer excitonic laser. Nat. Photonics, 9, 733-737(2015).

    [103] O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, Z. Mi. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett., 15, 5302-5306(2015).

    [104] C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, T. J. Kippenberg. Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators. Nano Lett., 18, 3138-3146(2018).

    [105] R. Maiti, R. A. Hemnani, R. Amin, Z. Ma, M. H. Tahersima, T. A. Empante, H. Dalir, R. Agarwal, L. Bartels, V. J. Sorger. A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm. Nanophotonics, 8, 435-441(2019).

    [106] J. C. Reed, S. C. Malek, F. Yi, C. H. Naylor, A. T. C. Johnson, E. Cubukcu. Photothermal characterization of MoS2 emission coupled to a microdisk cavity. Appl. Phys. Lett., 109, 193109(2016).

    [107] Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, X. Liu. Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method. Small, 13, 1701694(2017).

    [108] B. W. H. Baugher, H. O. H. Churchill, Y. Yang, P. Jarillo-Herrero. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol., 9, 262-267(2014).

    [109] D. R. Kazanov, A. V. Poshakinskiy, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, D. A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, T. V. Shubina. Multiwall MoS2 tubes as optical resonators. Appl. Phys. Lett., 113, 101106(2018).

    [110] L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, K. S. Novoselov. Strong light-matter interactions in heterostructures of atomically thin films. Science, 340, 1311-1314(2013).

    [111] T. Ren, P. Song, J. Chen, K. P. Loh. Whisper gallery modes in monolayer tungsten disulfide-hexagonal boron nitride optical cavity. ACS Photon., 5, 353-358(2017).

    [112] C. Lee, G. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, P. Kim. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 9, 676-681(2014).

    [113] X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol., 9, 682-686(2014).

    [114] P. K. Shandilya, J. E. Fröch, M. Mitchell, D. P. Lake, S. Kim, M. Toth, B. Behera, C. Healey, I. Aharonovich, P. E. Barclay. Hexagonal boron nitride cavity optomechanics. Nano Lett., 19, 1343-1350(2019).

    [115] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang. Black phosphorus field-effect transistors. Nat. Nanotechnol., 9, 372-377(2014).

    [116] Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, P. X. L. Feng. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies. Nanoscale, 7, 877-884(2015).

    [117] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 23, 12823-12833(2015).

    [118] F. Xia, H. Wang, Y. Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5, 4458(2014).

    [119] S. Schwaiger, M. Broell, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, S. Mendach. Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime. Phys. Rev. Lett., 102, 163903(2009).

    [120] Y. Yin, S. L. Li, S. Giudicatti, C. Y. Jiang, L. B. Ma, O. G. Schmidt. Strongly hybridized plasmon-photon modes in optoplasmonic microtubular cavities. Phys. Rev. B, 92, 241403(2015).

    [121] Y. Yin, S. Li, S. Boettner, F. Yuan, S. Giudicatti, E. S. G. Naz, L. Ma, O. G. Schmidt. Localized surface plasmons selectively coupled to resonant light in tubular microcavities. Phys. Rev. Lett., 116, 253904(2016).

    [122] Y. Yin, S. Li, V. Engemaier, S. Giudicatti, E. S. G. Naz, L. Ma, O. G. Schmidt. Hybridization of photon-plasmon modes in metal-coated microtubular cavities. Phys. Rev. A, 94, 013832(2016).

    [123] Y. Yin, Y. Chen, E. S. G. Naz, X. Lu, S. Li, V. Engemaier, L. Ma, O. G. Schmidt. Silver nanocap enabled conversion and tuning of hybrid photon-plasmon modes in microtubular cavities. ACS Photon., 4, 736-740(2017).

    [124] Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, O. G. Schmidt. Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection. ACS Appl. Mater. Interfaces, 11, 15891-15897(2019).

    [125] L. Wang, Z. Tian, B. Zhang, B. Xu, T. Wang, Y. Wang, S. Li, Z. Di, Y. Mei. On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene. Small, 15, 1805477(2019).

    Lu Wang, Xuefei Zhou, Shuo Yang, Gaoshan Huang, Yongfeng Mei. 2D-material-integrated whispering-gallery-mode microcavity[J]. Photonics Research, 2019, 7(8): 905
    Download Citation