• Chinese Journal of Lasers
  • Vol. 48, Issue 16, 1613002 (2021)
Xiaoqi Zhang, Fengping Yan*, Xuemei Du, Wei Wang, and Min Zhang
Author Affiliations
  • Key Laboratory of All-Optical Network and Modern Communication Network of Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing, 100044, China
  • show less
    DOI: 10.3788/CJL202148.1613002 Cite this Article Set citation alerts
    Xiaoqi Zhang, Fengping Yan, Xuemei Du, Wei Wang, Min Zhang. Water-Based Broadband Metamaterial Absorber Insensitive to Angle and Temperature[J]. Chinese Journal of Lasers, 2021, 48(16): 1613002 Copy Citation Text show less
    References

    [1] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [2] Liu Y, Li Z Y, Zhang W Z et al. Design and emulation of combined-shaped electromagnetic stealthy cloak made of metamaterials[J]. Journal of Functional Materials, 44, 2235-2238(2013).

    [3] Bağmancı M, Karaaslan M, Ünal E et al. Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator[J]. Optical and Quantum Electronics, 49, 1-14(2017).

    [4] Li P F, Liu B A, Ni Y Z et al. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion[J]. Advanced Materials, 27, 4585-4591(2015).

    [5] Grant J, Escorcia-Carranza I, Li C et al. A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer[J]. Laser & Photonics Reviews, 7, 1043-1048(2013).

    [6] Li G H, Chen X S, Li O P et al. A novel plasmonic resonance sensor based on an infrared perfect absorber[J]. Journal of Physics D: Applied Physics, 45, 205102(2012).

    [7] Cui Z J, Wang Y, Zhu D Y et al. Perfect absorption conditions and absorption characteristics of terahertz metamaterial absorber[J]. Chinese Journal of Lasers, 46, 0614023(2019).

    [8] Huang X J, Yang H L, Wang D Q et al. Calculations of a wideband metamaterial absorber using equivalent medium theory[J]. Journal of Physics D: Applied Physics, 49, 325101(2016).

    [9] Kim Y J, Hwang J S, Yoo Y J et al. Triple-band metamaterial absorber based on single resonator[J]. Current Applied Physics, 17, 1260-1263(2017).

    [10] Gu S, Su B, Zhao X P. Planar isotropic broadband metamaterial absorber[J]. Journal of Applied Physics, 114, 163702(2013).

    [11] Cui Y X, Fung K H, Xu J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 12, 1443-1447(2012).

    [12] Leonhardt U. Optical conformal mapping[J]. Science, 312, 1777-1780(2006).

    [13] Pu M B, Hu C G, Wang M et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 19, 17413-17420(2011).

    [14] Zhang Y P, Zhao X P, Bao S et al. Dendritic metamaterial absorber based on the impedance matching[J]. Acta Physica Sinica, 59, 6078-6083(2010).

    [15] Andryieuski A, Kuznetsova S M, Zhukovsky S V et al. Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials[J]. Scientific Reports, 5, 13535(2015).

    [16] Shen Z Y, Yang H L, Huang X J et al. Design of negative refractive index metamaterial with water droplets using 3D-printing[J]. Journal of Optics, 19, 115101(2017).

    [17] Huang Y X, Yuan X J, Wang C X et al. Flexible thin broadband microwave absorber based on a pyramidal periodic structure of lossy composite[J]. Optics Letters, 43, 2764-2767(2018).

    [18] Xiong Y J, Wang Y, Wang Q et al. Structural broadband absorbing metamaterial based on three-dimensional printing technology[J]. Acta Physica Sinica, 67, 084202(2018).

    [19] Wang Y, Leng Y B, Dong L H et al. Design of tunable metamaterial absorber based on graphene-metal hybrid structure[J]. Acta Optica Sinica, 38, 0716001(2018).

    [20] Wang H, Sivan P V, Mitchell A et al. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting[J]. Solar Energy Materials and Solar Cells, 137, 235-242(2015).

    [21] Ren J, Yin J Y. Cylindrical-water-resonator-based ultra-broadband microwave absorber[J]. Optical Materials Express, 8, 2060-2071(2018).

    [22] Pang Y Q, Wang J F, Cheng Q et al. Thermally tunable water-substrate broadband metamaterial absorbers[J]. Applied Physics Letters, 110, 104103(2017).

    [23] Yang F L, Gong J H, Yang E et al. Ultrabroadband metamaterial absorbers based on ionic liquids[J]. Applied Physics A, Marerial Science & Processing, 125, 149(2019).

    [24] Zhang X Q, Yan F P, Du X M et al. Broadband water-based metamaterial absorber with wide angle and thermal stability[J]. AIP Advances, 10, 055211(2020).

    [25] Ellison W J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0--25 THz and the temperature range 0--100 ℃[J]. Journal of Physical and Chemical Reference Data, 36, 1-18(2007).

    [26] Wu Z, Chen X Q, Zhang Z L et al. Design and optimization of a flexible water-based microwave absorbing metamaterial[J]. Applied Physics Express, 12, 057003(2019).

    [27] Shen Y, Zhang J Q, Pang Y Q et al. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation[J]. Optics Express, 26, 15665-15674(2018).

    [28] Iwaszczuk K, Strikwerda A C, Fan K B et al. Flexible metamaterial absorbers for stealth applications at terahertz frequencies[J]. Optics Express, 20, 635-643(2012).

    [29] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [30] Song Q H, Zhang W, Wu P C et al. Water-resonator-based metasurface: an ultrabroadband and near-unity absorption[J]. Advanced Optical Materials, 5, 1601103(2017).

    [31] Huang X J, Yang H L, Shen Z Y et al. Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime[J]. Journal of Physics D: Applied Physics, 50, 385304(2017).

    [32] Guo J Y, Liang Q X, Jiang Z J et al. A high-performance metamaterials absorbing structures based on fused deposition modeling[J]. Journal of Mechanical Engineering, 55, 226-232(2019).

    [33] Yoo Y J, Ju S, Park S Y et al. Metamaterial absorber for electromagnetic waves in periodic water droplets[J]. Scientific Reports, 5, 14018(2015).

    [34] Xie J W, Zhu W R, Rukhlenko I D et al. Water metamaterial for ultra-broadband and wide-angle absorption[J]. Optics Express, 26, 5052-5059(2018).

    Xiaoqi Zhang, Fengping Yan, Xuemei Du, Wei Wang, Min Zhang. Water-Based Broadband Metamaterial Absorber Insensitive to Angle and Temperature[J]. Chinese Journal of Lasers, 2021, 48(16): 1613002
    Download Citation