• Frontiers of Optoelectronics
  • Vol. 8, Issue 2, 220 (2015)
Yue QIAN*, Rong LIU, Xiujuan JIN, Bin LIU, Xianfu WANG, Jin XU, Zhuoran WANG, Gui CHEN, and Junfeng CHAO
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-015-0490-2 Cite this Article
    Yue QIAN, Rong LIU, Xiujuan JIN, Bin LIU, Xianfu WANG, Jin XU, Zhuoran WANG, Gui CHEN, Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2015, 8(2): 220 Copy Citation Text show less
    References

    [1] Wang H, Yang Y, Liang Y, Robinson J T, Li Y, Jackson A, Cui Y,Dai H. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Letters, 2011, 11(7): 2644–2647

    [2] Guo Y, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials, 2008, 20(15): 2878–2887

    [3] Chen S, Zhu J, Wu X, Han Q, Wang X. Graphene oxide—MnO2 nanocomposites for supercapacitors. ACS Nano, 2010, 4(5): 2822–2830

    [4] Wang Y, Xia H, Lu L, Lin J. Excellent performance in lithium-ionbattery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and singlecrystal Co3O4 ACS Nano, 2010, 4(3): 1425–1432

    [5] Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G.Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithiumion batteries. Nano Letters, 2012, 12(6): 3005–3011

    [6] Wang F, Xiang Q, Liu B, Wang L, Luo T, Chen D, Shen G. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Scientific Reports, 2013, 3:2007

    [7] Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan H J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Advanced Materials,2011, 23(18): 2076–2081

    [8] Wang Z Y, Wang Z C, Liu W T, Xiao W, Lou X W Amorphous CoSnO3@C nanoboxes with superior lithium storage capability.Energy & Environmental Sciences, 2013, 6: 87–91

    [9] O’Regan B, Gr tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346):737–740

    [10] Gr tzel M. Conversion of sunlight to electric power by nanocrystal line dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1–3): 3–14

    [11] Wang Z, Wang H, Liu B, Qiu W, Zhang J, Ran S, Huang H, Xu J,Han H, Chen D, Shen G. Transferable and flexible nanorod assembled TiO2 cloths for dye-sensitized solar cells, photodetectors,and photocatalysts. ACS Nano, 2011, 5(10): 8412–8419

    [12] Yuan C, Li J, Hou L, Zhang X, Shen L, Lou X W D. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Advanced Functional Materials, 2012, 22(21): 4592–4597

    [13] Wang X, Liu B, Xiang Q, Wang Q, Hou X, Chen D, Shen G. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices. ChemSusChem, 2014, 7(1): 308–313

    [14] Zhang G Q, Wu H B, Hoster H E, Chan-Park M B, Lou X W.Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance super-capacitors.Energy & Environmental Sciences, 2012, 5(11): 9453–9456

    [15] Law M, Greene L E, Johnson J C, Saykally R, Yang P.Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6):455–459

    [16] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012,41(2): 797–828

    [17] Wang X, Liu B, Wang Q, Song W, Hou X, Chen D, Cheng Y B,Shen G. Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors. Advanced Materials, 2013, 25(10): 1479–1486

    [18] Ji L, Lin Z, Alcoutlabi M, Zhang X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries.Energy & Environmental Sciences, 2011, 4(8): 2682–2699

    [19] Saito M, Fujihara S. Large photocurrent generation in dye-sensitized ZnO solar cells. Energy & Environmental Sciences, 2008, 1(2):280–283

    [20] Wang H, Pan Q, Cheng Y, Zhao J, Yin G. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochimica Acta, 2009, 54(10): 2851–2855

    [21] Park K T, Xia F, Kim SW, Kim S B, Song T, Paik U, Park W. Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes. Journal of Physical Chemistry C, 2013, 117(2): 1037–1043

    [22] Liu J, Li Y, Ding R, Jiang J, Hu Y, Ji X, Chi Q, Zhu Z, Huang X.Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. Journal of Physical Chemistry C, 2009,113(13): 5336–5339

    [23] Belliard F, Irvine J T S. Electrochemical performance of ball-milled ZnO–SnO2 systems as anodes in lithium-ion battery. Journal of Power Sources, 2001, 97–98: 219–222

    [24] Wu J, Chen G, Yang H, Ku C, Lai J. Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells. Applied Physics Letters, 2007, 90(21): 213109

    [25] Ahmad M, Shi Y, Nisar A, Sun H, Shen W,WeiM, Zhu J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalizationby Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. Journal of Materials Chemistry,2011, 21(21): 7723–7729

    [26] Liu B,Wang Z, Dong Y, Zhu Y, Gong Y, Ran S, Liu Z, Xu J, Xie Z,Chen D, Shen G. ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts. Journal of Materials Chemistry, 2012, 22(18): 9379–9384

    [27] Liu J, Li Y, Huang X. ZnO nanoneedle arrays directly grown on bulk nickel substrate for Li ion battery electrodes with improved performance. In: Proceedings of IEEE International Nanoelectronics Conference, 2008, 53–57

    [28] Liu B, Wang X, Chen H, Wang Z, Chen D, Cheng Y, Zhou C, Shen G. Hierarchical silicon nanowires-carbon textiles matrix as a binderfreeanode for high-performance advanced lithium-ion batteries.Scientific Reports, 2013, 3: 1622

    [29] Yin H, Yu K, Peng H, Zhang Z, Huang R, Travas-Sejdic J, Zhu Z.Porous V2O5 micro/nano-tubes: synthesis via a CVD route, single-tube-based humidity sensor and improved Li-ion storage properties.Journal of Materials Chemistry, 2012, 22(11): 5013–5019

    [30] Shim J, Kostecki R, Richardson T, Song X, Striebel K A.Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. Journal of Power Sources, 2002, 112(1): 222–230

    [31] Chiang Y, Sadoway D R, Jang Y, Huang B,Wang H. High capacity,temperature-stable lithium aluminum manganese oxide cathodes for rechargeable batteries. Electrochemical and Solid-State Letters,1999, 2(3): 107–110

    [32] Wang F, Yu M, Hsiao Y, Tsai Y, Hwang B, Wang Y, Wan C. Aging effects to solid electrolyte interface (SEI) membrane formation and the performance analysis of lithium ion batteries. International Journal of Electrochemical Science, 2011, 6(4): 1014–1026

    [33] Wu M S, Chiang P C J, Lin J C. Electrochemical investigations on capacity fading of advanced lithium-ion batteries after storing at elevated temperature. Journal of the Electrochemical Society, 2005,152(6): A1041–A1046

    [34] Song W, Xie J, Liu S, Zheng Y, Cao G, Zhu T, Zhao X. Graphene decorated with ZnO nanocrystals with improved electrochemical properties prepared by a facile in situ hydrothermal route.International Journal of Electrochemical Science, 2012, 7(3):2164–2174

    [35] Wu X M, Chen S, Ma M Y, Liu J B. Synthesis of Co-coated lithium manganese oxide and its characterization as cathode for lithium ionbattery. Ionics, 2011, 17(1): 35–39

    [36] Chang K, Chen W. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano, 2011, 5(6): 4720–4728

    [37] Jia X, Chen Z, Suwarnasarn A, Rice L, Wang X, Sohn H, Zhang Q,Wu B M, Wei F, Lu Y. High-performance flexible lithium-ion electrodes based on robust network architecture. Energy & Environmental Sciences, 2012, 5(5): 6845–6849

    [38] Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z. Porous nanocrystalline TiO2 with high lithium-ion insertion performance. Journal of Materials Science, 2013, 48(6): 2733–2742

    [39] Li J, Xiong S, Liu Y, Ju Z, Qian Y. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Applied Materials & Interfaces, 2013, 5(3): 981–988

    [40] Ye M, Xin X, Lin C, Lin Z. High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Letters, 2011, 11(8): 3214–3220

    [41] Chang S, Li Q, Xiao X, Wong K Y, Chen T. Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods. Energy & Environmental Sciences,2012, 5(11): 9444–9448

    [42] Zhang P,Wu C, Han Y, Jin T, Chi B, Pu J, Jian L. Low-temperature preparation of hierarchical structure TiO2 for flexible dye-sensitizedsolar cell. Journal of the American Ceramic Society, 2012, 95(4):1372–1377

    Yue QIAN, Rong LIU, Xiujuan JIN, Bin LIU, Xianfu WANG, Jin XU, Zhuoran WANG, Gui CHEN, Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2015, 8(2): 220
    Download Citation